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Summary 

1. Two data-poor stock assessment models are applied to available data and compared with 
the established stock assessment for Patagonian toothfish (Dissostichus eleginoides) using 
CASAL software. The two data-poor models are CMSY+ (Froese et al. 2017) and JABBA 
(Winker et al. 2018); both are Bayesian surplus production models with simple data 
requirements, and substantially different formulation than the CASAL model. 

2. Overall, both alternative models produced similar MSY estimates, moderately different 
relative biomass estimates, and substantially different absolute biomass estimates 
compared to the CASAL model. The CMSY+ model proved of limited use due to its sensitivity 
to assumptions about current stock status. The JABBA model performed better as it makes 
no assumptions about the current stock status, and its relative biomass and MSY estimates 
seemed less susceptible to changes in priors. 

3. Compared to both alternative models, we consider CASAL as the preferred approach to the 
toothfish stock assessment in Falkland Islands, as it is an integrated, age-structured model 
capable of accounting for dynamics in gear selectivity and lagged effects of recruitment and 
mortality.  

4. Findings of this report might provide insight into the usefulness of CMSY+ and JABBA data-
poor approaches for other species /stocks managed by FIFD, where data limitations prevent 
the use of integrated CASAL assessment. 

 
 
 

1. Introduction 

Patagonian toothfish (Dissostichus eleginoides) is a large notothenioid fish found on the southern 
shelves and slopes of South America and around the sub-Antarctic islands of the Southern Ocean. It 
is a long-lived species (>50 years), which initially grows rapidly on the shallow shelf areas, before 
undertaking an ontogenetic migration into deeper waters (Collins et al. 2010). In Falkland Islands 
waters, Patagonian toothfish spawn on the slopes of Burdwood Bank at ca. 1000 m depth with a 
minor abundance peak in May, and a major peak in July to August (Laptikhovsky et al. 2006). The 
eggs, larvae, and small juveniles (<10 cm TL) develop and grow in epipelagic layers of the Falkland 
Current, and when juveniles attain 10-12 cm TL (<1 year old; Lee 2017), they start to migrate 
towards the Patagonian shelf and are found at depths <100 m (Arkhipkin and Laptikhovsky 2010). 
Immature toothfish remain there for 3-4 years, and then, on reaching 60-70 cm TL, migrate into 
deeper water over the Patagonian slope (Laptikhovsky et al. 2008). 

The Falkland Islands exploratory toothfish longline fishery began in 1992 and became an 
established fishery in 1994 (Laptikhovsky and Brickle 2005). Fishing was traditionally conducted 
using the Spanish system of longlining (although in the beginning a few vessels used the Mustad 
Autoline system), until the ‘umbrella’ system was introduced in 2007. The latter system was 
developed to reduce the loss of hooked toothfish to depredation by cetaceans, with hooks set in 
clusters and an ‘umbrella’ of buoyant netting set above each cluster. The umbrella floats above the 
hooks whilst the gear is on the seabed, but when the gear is recovered, it folds over the hooks and 
around the fish that has been caught, protecting it from depredation (Brown et al. 2010). Following 
initial trials in 2007, since 2008 the ‘umbrella’ system has been adopted by all vessels operating in 
the fishery in the Falkland Islands. 

Although longlining is the only fishery targeting toothfish in Falkland Islands waters, notable 
quantities are taken as a bycatch in finfish and calamari trawl fisheries. In finfish fishery toothfish is a 
commercially valuable bycatch, while in calamari fishery it is usually discarded, due to the small size 
of the specimens (20-30 cm TL). These fisheries exploit different parts of the toothfish population in 
different areas: longlining occurs on the slope and in deep water, finfish trawling on the shelf 
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primarily north and west of the Falkland Islands, and calamari trawling on the shelf south and east of 
the Falkland Islands (Figure 1). 

Management of the Falkland Islands toothfish fishery has relied on an integrated age-
structured stock assessment implemented in CASAL software (Bull et al. 2012) since 2012. Although 
CASAL has become the standard approach to toothfish stock assessment in the Southern Ocean 
(Hillary et al. 2006, Dunn and Hanchet 2010, Ziegler and Welsford 2015), examining alternative 
models can provide a useful comparison (Cadrin and Dickey-Collas 2015), and either increase our 

confidence in CASAL outputs, or prompt re-evaluation of its assumptions. This report presents the 
results of two data-poor toothfish stock assessment approaches, using data up to and including 
year 2019. The two models used are CMSY+ (Froese et al. 2017) and JABBA (Winker et al. 2018); 
both are Bayesian surplus production models with simple data requirements, using only a small 
subset of input data needed for CASAL assessment. The alternative model outputs are compared 
with the results of integrated age-structured toothfish stock assessment done in CASAL for year 
2019 (Skeljo and Winter 2020). 

 

 
Figure 1. Spatial distribution of toothfish catch and effort by fisheries in 2019. Thickness of grid lines is 
proportional to the number of vessel days; greyscale is proportional to the toothfish catch biomass (tonnes).  

 
 

1.1. Stock structure and assumptions 

The stock structure of Patagonian toothfish in the Southwest Atlantic is still poorly understood. On a 
larger spatial scale, there is a well-documented genetic differentiation between toothfish found on 
the Patagonian Shelf and around South Georgia and South Sandwich Islands (Shaw et al. 2004, 
Rogers et al. 2006, Canales-Aguirre et al. 2018). However, toothfish population structure across the 
Patagonian Shelf is less certain, and it is not yet clear whether there are several separate self-
sustaining populations or one large meta-population (Parker 2015).  

In order to get a better understanding of the toothfish stock structure within Patagonian 
Shelf (and especially Falkland Islands) waters a range of methodologies were employed by FIFD, 
most notably: otolith shape analysis, otolith microchemistry analysis and analysis of toothfish 
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migrations using conventional and satellite tags (Farrugia 2018). Shape analysis revealed significant 
differences in sagittal otoliths shape between different regions on the Patagonian Shelf, but further 
evidence is required to identify to what extent this reflects localised stock delineation (Lee et al. 
2018). Otoliths microchemistry analysis suggested that juveniles settling on the Falkland Shelf 
originate from two spatially distinct areas, presumably eastern Burdwood Banks in Falkland Islands 
waters, and south of Diego Ramirez Islands in Chilean waters (Ashford et al. 2012, Randhawa et al. 
2020 in review). The existence of separate spawning populations off southern Chile and south of the 
Falkland Islands on the Burdwood Bank has already been proposed by several authors (Laptikhovsky 
et al. 2006, Arana 2009, Ashford et al. 2012). Finally, the tagging work done in Falkland Islands 
waters showed a very high level of site fidelity and limited movement of adult toothfish (Brown et al. 
2013), leading to the conclusion that the part of the stock targeted by the longline fishery (primarily 
older, adult individuals) is most likely confined to Falkland Islands waters. 

Considering the currently available information, for the purpose of this assessment we 
assumed that there is one discrete toothfish stock present in Falkland Islands waters. However, the 
uncertainty of this assumption must be acknowledged, and should be periodically reviewed to 
reflect the best available information. 
 
 
 

2. Methods 

2.1. CMSY+ model setup 

CMSY+ is a Bayesian surplus production model, based on the Schaefer production function (Schaefer 
1954). It can estimate fisheries reference points, relative stock biomass and exploitation from catch 
time series and broad priors for the intrinsic rate of population increase r, the carrying capacity K, 
and the relative stock biomass B/K at the beginning, an intermediate year and the end of the time 
series. 

Since the intrinsic rate of population increase also represents an integrated measure of 
population resilience, the prior range for r was selected based on the classification of species’ 
resilience in FishBase (Froese and Pauly 2019, Froese et al. 2017). The prior range for K is calculated 
automatically by default model rules, based on the ratio of highest catch in the time series over r 
(Froese et al. 2017). A major improvement of CMSY+ over its predecessor CMSY is the introduction 
of multivariate lognormal priors for r and K, replacing the previous uniform prior distributions and 
thus simplifying the determination of the ‘best’ r-K pair (Froese et al. 2019). The prior estimates of 
relative biomass (B/K) at the beginning and the end of the time series were chosen manually from 
the set of predefined ranges (Froese et al. 2019), depending on the assumed stock status. The 
beginning relative biomass range was chosen based on the same assumption used in the integrated 
CASAL assessment (i.e. that the population was unexploited at the time), and the ending relative 
biomass range was set to medium level in the base-case scenario, with different assumed ending 
ranges tested in the sensitivity analysis. The intermediate relative biomass range was calculated 
automatically by default model rules which are based on the overall catch trend and interplay 
between the minimum and maximum catch (Froese et al. 2017). Prior ranges used in CMSY+ 
assessment are given in Table 1. 

Once the priors are defined, CMSY+ runs a Monte Carlo algorithm to find the ‘viable’ r-K 
pairs. First, a random r-K pair is selected from within the prior ranges for r and K. Then, a starting 
biomass is selected from the prior biomass range for the first year and the Schaefer surplus 
production model is used to calculate the predicted biomass in subsequent years. An r-K pair is 
considered viable if the predicted biomass does not become negative (i.e. stock doesn’t crash) and 
does not fall outside the prior intermediate or ending depletion range. The most probable values of r 
and K (with 95% confidence limits) are computationally derived from the validated r and K pairs 
(Froese et al. 2017), and used to calculate standard fisheries reference points such that     



4 

 

    ⁄                  ⁄  ⁄ (Ricker 1975, Schaefer 1954). It should be noted that CMSY+ 
incorporates a linear decline of surplus production to the Schaefer model when biomass falls below 
       (i.e.    ), as recruitment may be compromised at this level (Haddon et al. 2012, Carruthers 
et al. 2014, Froese et al. 2015). 

This assessment uses the most recent version of CMSY+ R-code available at the time of 
writing, CMSY_2019_9f, published online at http://oceanrep.geomar.de/33076/ in December 2019.  
 
Table 1. Parameter prior ranges used in the CMSY+ model, with a brief description of the selection criteria. The 
user defined prior ranges for resilience and relative biomass at the beginning /end of time series were chosen 
from the set of predefined ranges suggested by Froese et al (2019). 

Parameter Prior range 
Range selection 
criteria 

Description 

r 0.05 - 0.5* user defined 
D. eleginoides is described as a 'low' resilience species according 
to FishBase (Froese and Pauly 2019) 

    
K 24.2 - 72.6* default  

Calculated automatically by default rules, based on the ratio of 
the highest catch over r 

    
B1987/K 0.75 - 1 user defined 

Stock is assumed to have been 'nearly unexploited' at this time, 
based on the very low reported catches 

    
B1998/K 0.5 - 0.9 default 

Calculated automatically by default rules, based on the catch time 
series trend 

    
B2019/K 0.2 - 0.6 user defined 

For the base-case scenario the 'medium depletion' category was 
chosen, but other ranges were explored as well 

* range is converted into a multivariate lognormal prior in the model 

 
 

2.2. JABBA model setup 

JABBA is a Bayesian state-space surplus production model, based on the generalized Pella-Tomlinson 
surplus production function (Pella and Tomlinson 1969) of the form: 

    
 

   
  (  (

  

 
)
   

), 

where r is the intrinsic rate of population increase at time t, K is the carrying capacity, B is stock 
biomass at time t, and m is a shape parameter that determines at which B/K ratio maximum surplus 
production is attained. The Pella-Tomlinson function reduces to the Schaefer function if the shape 
parameter m=2, and to the Fox function if m approaches 1. JABBA produces assessment outcomes 
for all three surplus production functions; for brevity only the Pella-Tomlinson results are presented. 
The outputs from the other surplus production functions were similar and would not lead to 
different conclusions. 
JABBA can estimate fisheries reference points, relative stock biomass and exploitation from catch 
and abundance indices time series and priors for the intrinsic rate of population increase r, the 
carrying capacity K, and the relative biomass B/K at the start of the available catch time series. The 
major difference of JABBA compared to CMSY is inclusion of relative abundance indices provided in 
the form of standardized CPUE time-series and assumed to be proportional to biomass. It is 
important to note that the relative abundance indices available to JABBA are the same ones that are 
used for CASAL, so there is a predisposition that it should successfully parallel CASAL. The prior range 
for r was based on the classification of species’ resilience as provided in FishBase (Froese and Pauly 
2019, Froese et al. 2017); the prior for relative biomass B/K at the start of the available catch time 
series was chosen based on the same assumption used in the integrated CASAL assessment (i.e. that 
the population was unexploited at the time); and the prior for K was defined to be similar with the 
one used in CMSY+ and CASAL assessment (it could not be exactly the same, as priors are defined in 
slightly different ways between these models). Prior ranges used in JABBA assessment are given in 
Table 2.  

http://oceanrep.geomar.de/33076/
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Once the priors were defined, JABBA was executed in R environment using version v1.5beta 
(available online at https://github.com/Henning-Winker/JABBAbeta). The Bayesian posterior 
distributions of all quantities of interest are estimated by means of a Markov Chains Monte Carlo 
(MCMC) simulation. Two MCMC chains with 30,000 iterations each were used, with a burn-in of 
5,000 for each chain and a thinning rate of five iterations. A full description of the JABBA model, 
including formulation and state-space implementation, prior specification options and diagnostic 
tools is available in Winker et al. (2018). 
 
Table 2. Parameter priors used in the JABBA model, with a brief description of the selection criteria.  

Parameter Prior 
 

Description 

r log-normal; range = 0.05 - 0.5* 
D. eleginoides is described as a 'low' resilience species 
according to FishBase (Froese and Pauly 2019) 

    
K log-normal; µ = 60,000, cv = 1 

Defined to be similar with the one used in CMSY+ and 
CASAL assessment 

    
B1987/K log-normal; µ = 1, cv = 0.1 

Stock is assumed to have been 'nearly unexploited' at this 
time, based on the very low reported catches 

    * range is converted into a lognormal prior in the model 

 

 

2.3. Data 

Three datasets were available as information for the CMSY+ and JABBA stock assessment models: 
total removals by combined fisheries (required by both models), and catch-per-unit-of-effort (CPUE) 
time series for Spanish- and umbrella-system longline fisheries (required only by JABBA) (Table 3). 
 
Table 3. Datasets used for the CMSY+ and JABBA stock assessment models. 

Data Time series CMSY+ input data JABBA input data 
    

 CPUE    

  Spanish-system longline 1996-2007, 2013  + 

  umbrella-system longline 2007-2019  + 
    

Removals 1987-2019 + + 

 
 
CPUE 
Although CPUE data were available for trawl fisheries as well, only longline CPUE was used as a 
relative abundance index. This is motivated by the inconsistency of the toothfish CPUE in trawl 
fisheries, where this species is not targeted, and its bycatch may change due to factors other than 
stock abundance (e.g. fisheries are switching targets or areas). The longline CPUE data were treated 
separately for Spanish- and umbrella-system longline, according to the documented difference in the 
toothfish CPUE between these two fishing gears /techniques (Brown et al. 2010). 

For the umbrella-system longline, additional data selection had to be performed in order to 
avoid introducing bias in the CPUE estimates. The most substantial decision, compared to the 
previous year’s assessment, was to use only the CPUE data from Falkland Islands flagged vessels. The 
reason is that the fishing was predominantly done by a single Falkland Islands vessel since the onset 
of the umbrella-system (CFL Gambler, replaced by CFL Hunter in 2017), assisted occasionally by one 
or two chartered Chilean vessels. None of the chartered vessels fished in Falkland Islands waters in 
more than two years since 2007, and their CPUE data were inconsistent. Moreover, at least one of 
these vessels had restrictions imposed on its fishing practice (e.g. limit on the number of fishing days 
in the ‘best’ fishing grounds), which were not in place for the Falkland Islands vessel. All of this led to 
a conclusion that the CPUE would be more representative as an index of abundance if only Falkland 
Islands vessels data were used. With a similar goal, data from the ‘tagging trips’ and from the 

https://github.com/Henning-Winker/JABBAbeta/
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longline sets at depths <600 m were removed from the analysis. Tagging trips were removed 
because part of the actual catch was not reported (corresponding to the tagged and released fish), 
leading to a biased, lower estimates of CPUE. Fishing in shallow waters was excluded because 
longlining is prohibited at depths <600 m, and the corresponding sets were not regular commercial 
fishing (most likely they were experimental fishing, with the aim of collecting brood stock for the 
toothfish rearing facility). 

The CPUE data selected for inclusion in the analysis were prepared for modelling in three 
steps. First, unstandardized CPUE values were calculated for each longline set as the reported 
toothfish catch in kg per 1,000 hooks. Second, these were multiplied by the whale depredation rates. 
Estimation of whale depredation is described in more detail in the Removals section of the report, 
but essentially, toothfish catch depredated from the longline before being hauled on board is also 
accounted for when calculating CPUE. Since this ‘true’ catch equals reported + depredated catch, 
resulting CPUE values will on average be higher than the ones calculated solely from the reported 
catch. Third, CPUE was standardised using a generalised linear model (GLM), providing a time series 
of CPUE values (with the associated standard errors) which were assumed to be relative abundance 
indices (Appendix 1, Appendix 2). 
 
Removals 
Total removals were calculated by adding three distinct catch components: (a) reported catches in 
Falkland Islands waters, (b) catches taken by Illegal, Unreported and Unregulated (IUU) fishing, and 
(c) catches lost to undetected whale depredation. 

All reported toothfish catches taken in longline (targeted catch) and trawl fisheries (bycatch) 
were used, going back to 1987.  

The IUU fishing is inherently difficult to estimate (Pitcher et al. 2002, Ainsworth and Pitcher 
2005), and no reliable information specific to the Falkland Islands waters was found. Therefore, we 
utilized the data for the Antarctic region from Table 2 in Agnew et al. (2009), which give estimates of 
IUU fishing as a percentage of reported catch in 1980-2003. The Antarctic region data was chosen 
because it pertains specifically to toothfish. Since these data don’t cover the whole assessed period, 
the level of IUU fishing in later years was assumed to be 5% of the reported catches, based on the 
overall trend of IUU decline post-2000 (CCAMLR 2010).  

Whale depredations are included in longline catch reports when they are evident as 
toothfish hauled up damaged or destroyed by bite-marks. However, toothfish taken entirely by 
whales before hauling are not accounted for in the reports. In order to address this, Winter and 
Pompert (2016) modelled whale depredation in Falkland Islands waters by comparing the toothfish 
CPUE with and without whales present on observed longline sets, using a generalised additive model 
(GAM). This allowed us to extrapolate the toothfish catch lost to whale depredation for all 
commercial longline sets, based on the fishing month, longline position, fishing depth, number of 
hooks set and soak-time. As the GAM is probabilistic, some longline sets obtained model-fit 
depredation rates <1, implying less toothfish catch in the absence of whale depredation. That 
outcome is obviously artefactual, and to make the estimates more precautionary, depredation rates 
for individual longline sets were therefore adjusted upwards by dividing them with the 5th percentile 
of their own distribution; a value of approximately 0.87 for the Spanish- and 0.96 for the umbrella-
system longline. 

In order to combine the above-mentioned catch components into total removals by fishery, 
first the IUU catches were added to the reported catches in each year, and then the undetected 
whale depredation rate was applied. Effectively, this assumes that reported and IUU catches 
experience the same average rate of whale depredation. Total removals used in the CMSY+ and 
JABBA assessment model runs are given in Appendix 2. 
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3. Results 

3.1. CMSY+ model estimates 

In the base-case analysis toothfish was considered a low resilience species (Froese and Pauly 2019), 

with a medium depletion level in the final year of the assessment period. The key CMSY+ output 

parameters estimated under these assumptions are summarised in Table 4. At the beginning of the 

time series the estimated biomass (B1987) was already below the carrying capacity K, and by the end 

of the time series (B2019) it declined to 0.438 K. This estimate of ending relative biomass (B2019/K) 

should be interpreted with caution, as its 95% confidence interval is wide and spans disparate levels 

of stock status (Figure 2). Comparison of the catch time series with the estimated MSY shows that 

the catches (mostly from finfish trawling) were below MSY before the onset of the longline fishery in 

1994, followed by a period with generally high catches and a few catch peaks well above MSY 95% 

confidence intervals (Figure 3). Since 2006, catches have been stable and fluctuated around MSY, 

coinciding with the introduction of the ITQ system to the longline fishery. According to the model, 

high catches in the longline fishery in 1994-2005 led to a quick decrease in biomass, which has 

significantly slowed down once the catches have been reduced in 2006 (Figure 4). 

 
Table 4. Key output parameters estimated by CMSY+ Schaefer production model (r, K, B1987) and resulting 
calculations of year 2019 biomass and MSY.  

Parameter median 95% CI 

r 0.180  0.098 - 0.329 

K 36,667 t    23,967 - 56,097 t 

B1987 32,225 t    27,367 - 36,910 t 

B2019 16,068 t       7,816 - 21,792 t 

B1987/K 0.879  0.746 - 1.007 

B2019/K 0.438  0.213 - 0.594 

MSY    1,604 t     1,095 - 2,194 t 

 
 

  
Figure 2. Median and 95% confidence intervals of the relative biomass trend estimated by CMSY+. 
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Figure 3. Toothfish catches (full line), relative to CMSY+ estimated MSY (dashed line) with 95% confidence 
interval (shaded area).  

 
 

  
Figure 4. CMSY+ estimates of catch/MSY relative to B/K, from beginning (square) to the ending (triangle) year 
in the time series. The Schaefer equilibrium curve, indented at B/K < 0.25 to account for reduced recruitment 
at low stock sizes, is added for reference (grey line); this curve indicates relative catches that would maintain 
the biomass (relative catches above the curve will shrink future biomass, and relative catches below the curve 
allow future biomass to increase). Year 2006 (circle) marks the introduction of the ITQ system to the longline 
fishery. 

 
 
Retrospective analysis 
The retrospective analysis was done by successively removing one, two and three final years of data 
from the base-case model and rerunning the analysis. All three runs produced almost identical 
relative biomass estimates as the base-case model, with negligible departures (Figure 5). This is a 
desirable pattern, indicating that the model isn’t overly influenced by the observations in the most 
recent years. It was the expected outcome, as catches are the only observation used by the model, 
and they have fluctuated very little in the last several years.  
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Figure 5. Estimated relative biomass trends for the base-case model (black line) and three retrospective model 
runs. The numeric label indicates the year up to and including which each individual retrospective model was 
run. 

 
 
Sensitivity analysis 
One of the requirements of CMSY+ model is defining a prior range for the relative stock biomass at 
the end of the time series (B2019/K). However, the estimate of the median B2019/K is one of the key 
model outcomes as well, and is calculated only from the results that fall within the specified prior 
B2019/K range. This means that the model cannot ‘recover’ from an incorrectly set ending biomass 
range, because, by design, ending biomass estimates outside the prior range are discarded by the 
CMSY+ algorithm (Froese et al. 2017). This leads to a concern that the outcome might be overly 
influenced by the assumed prior (circular logic), leading to a biased estimate.  

In order to explore the sensitivity of our model to the assumed ending biomass range, the 
base-case scenario was compared to six alternative model runs with different prior ending ranges 
(Figure 6). It is evident that even a small change of the prior range can lead to a very different 
median B2019/K estimate, and consequently to a different current stock status estimate. As expected, 
higher prior ranges lead to a more optimistic assessment outcome, and vice versa.  
 

  
Figure 6. Estimated relative biomass trends for the base-case model (black line) and six alternative model runs 
with different assumed prior ranges of ending relative biomass (B2019/K). 
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3.2. JABBA model estimates 

The key output parameters estimated by JABBA are summarised in Table 5. The estimated biomass 

declined from 0.953 K in 1987 to 0.329 K in 2019. Although the ending relative biomass is somewhat 

low, it should be noted that its 95% confidence interval is wide (0.189 - 0.582), spanning values that 

would lead to a very different interpretations of stock status (Figure 7). Comparison of the catch 

time series with the estimated MSY is given in Figure 8, and closely resembles the results of the 

CMSY+ model. The high catches in 1994-2005 (well above MSY in most years) led to a quick decline 

in toothfish biomass; however, the introduction of ITQ system to the longline fishery in 2006 lead to 

a more sustainable catches (fluctuating closely around the median MSY), and the decline in biomass 

has gradually slowed down, before reverting to an increasing trend in the final year (Figure 9).  

 
Table 5. Key output parameters estimated by JABBA model (r, K, B1987) and resulting calculations of year 2019 
biomass and MSY.  

Parameter median 95% CI 

r 0.162  0.067 - 0.294 

K 29,753 t    18,614 - 58,031 t 

B1987 28,094 t    16,933 - 55,147 t 

B2019 9,683 t       4,485 - 27,245 t 

B1987/K 0.953  0.811 - 1.032 

B2019/K 0.329  0.189 - 0.582 

MSY    1,632 t     1,109 - 2,093 t 

 

 

 

Figure 7. Median and 95% confidence intervals of the relative (left) and absolute (right) biomass trend 
estimated by JABBA. Note that the median trends are identical (although shown on a different scale), and only 
the confidence intervals differ. 
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Figure 8. Toothfish catches (full line), relative to JABBA estimated MSY (dashed line) with 95% confidence 
interval (shaded area).  

 
 

  
Figure 9. JABBA estimates of catch/MSY relative to B/K, from beginning (square) to the ending (triangle) year in 
the time series. Pella-Tomlinson equilibrium curve, with inflection point at 0.40 K, is added for reference (grey 
line); this curve indicates relative catches that would maintain the biomass (relative catches above the curve 
will shrink future biomass, and relative catches below the curve allow future biomass to increase). Year 2006 
(circle) marks the introduction of the ITQ system to the longline fishery. 
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Retrospective analysis 
The retrospective analysis was done by successively removing one to six final years of data from the 
base-case model and rerunning the analysis. All six runs produced similar relative biomass estimates 
as the base-case model, and no systematic trend in departures from the base-case model was 
evident (Figure 10). Unlike CMSY+, JABBA uses both catch and CPUE observations, which is why 
there is comparatively more variation in retrospective analysis - CPUE showed higher fluctuations in 
recent years than did the catches.  
 

 
Figure 10. Estimated relative biomass trends for the base-case model (black line) and six retrospective model 
runs. The numeric label indicates the year up to which individual retrospective model was run (inclusive). 

 
 
Sensitivity analysis 
Priors for r, K and relative biomass at the beginning of the time series (B1987/K) need to be specified 
before JABBA model can be run. Here we tested the effect of different prior settings on the model 
outcomes; although this is by no means an extensive analysis, it does suggest in which way each of 
the priors affects the model, and can be considered as a first step towards a more comprehensive 
analysis in the future. 

In the first scenario, mean of the lognormal prior for K was decreased from 60,000 to 40,000 
t; compared to the base-case model, this change had almost no effect on the estimated relative 
biomass and only a minor effect on the absolute biomass (Figure 11). In the second scenario, cv of 
the lognormal prior for B1987/K was increased from 10% to 25%; this led to a notably lower estimates 
of relative and absolute biomass at the beginning of the time series, but as the model progressed 
the trend became increasingly similar to the base-case model, with only a minor difference in the 
final year. In the third scenario, higher intrinsic population growth rate was assumed, and r range 
was increased from 0.05-0.5 to 0.25-0.57 (both ranges are found on FishBase). This change had the 
most substantial effect on the model outcomes and produced a distinct trend compared to the other 
scenarios, as the model now described the stock in terms of higher r and much lower K. In other 
words, instead of explaining the observed data by a larger stock size with low productivity (as in the 
base-case), the model did it by a smaller stock size with high productivity. The effect of the higher 
prior r on the relative biomass estimates was less obvious, producing very similar result to the other 
scenarios in the final year (although, unlike other scenarios, with an increasing trend in the recent 
years). The absolute biomass estimates were approximately 40% lower than in the base-case, but 
high estimated r meant that the population could produce high surplus biomass, leading to a higher 
estimated MSY.  
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Overall, this sensitivity analysis indicates that the assumptions about species intrinsic 
population growth rate /resilience have the most impact on the model outcomes and should be 
further explored. However, base-case and all three alternative scenarios produced comparable 
relative biomass estimates in the final year, as well as similar MSY. 
 

  
Figure 11. Estimated relative (left) and absolute (right) biomass trends for the base-case model (black line) and 
three alternative model runs with different assumed priors for K, r and B1987/K. 

 
 
 

3.3. Comparison of CMSY+, JABBA and CASAL assessment 

Since CMSY+, JABBA and CASAL models have very different structure, and estimate a wide variety of 

output parameters, not all their outcomes can be directly compared. Assessment in CASAL is the 

preferred approach to toothfish stock assessment in Falkland Islands, so here we present only the 

CMSY+ and JABBA model outcomes which are directly comparable with the CASAL results. It is 

important to point out that CASAL does not provide estimates of K and B2019/K, as the model 

outcomes are expressed in terms of the spawning stock biomass instead of total biomass. To make 

the comparison with CMSY+ and JABBA possible, we approximated B2019/K by B2019/B1987 for the 

CASAL model (i.e. we treated the total biomass in 1987 as being at the carrying capacity). This was 

based on the CASAL estimate of spawning stock biomass in 1987 being only slightly lower than the 

estimated unexploited spawning stock biomass; extending the same logic to the total biomass didn’t 

seem unreasonable. 
Overall, CMSY+ and JABBA produced lower estimates of both relative and absolute biomass 

throughout the time series compared to CASAL (Table 6, Figure 12). This is especially pronounced for 

the absolute biomass, with alternative models estimates at approximately half of the CASAL 

estimate at the beginning of the time series, and half (CMSY+) or one-third (JABBA) at the end of the 

time series. The trends are different as well, with the alternative models showing a steep decline 

approximately in 1994-2006 and levelling off afterwards, and CASAL estimate exhibiting a constant 

moderate decline throughout the time series. In general, differences in relative biomass estimates 

between CASAL and the alternative models are much lower than the differences in absolute 

biomass. The MSY estimates are more similar, with alternative models producing approximately 15% 

lower values than CASAL. 
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Table 6. Comparison of the selected output parameters estimated by CASAL, CMSY+ and JABBA stock 
assessment models for the toothfish in Falkland Islands waters (1987-2019). All biomass estimates are given in 
tonnes.  

  CASAL CMSY+ JABBA 

K ~ B1987 36,667 (23,967 - 56,097) 29,753 (18,614 - 58,031) 

B1987 61,280 (54,298 - 268,511) 32,225 (27,367 - 36,910) 28,094 (16,933 - 55,147) 

B2019 29,392 (23,668 - 244,378) 16,068 (7,816 - 21,792) 9,683 (4,485 - 27,245) 

B2019/K 0.480* 0.438 (0.213 - 0.594) 0.329 (0.189 - 0.582) 

MSY 1,890 (1,665 - 7,205) 1,604 (1,095 - 2,194) 1,632 (1,109 - 2,093) 

* calculated as B2019/B1987 

 
 

  
Figure 12. Estimated relative (left) and absolute (right) biomass trends for CASAL, CMSY+ and JABBA models. 

 
 
 

4. Discussion 

The two alternative models used for the toothfish stock assessment in this report, CMSY+ and 
JABBA, belong to the surplus production models (SPM). SPMs are among the least data demanding 
population models that can produce estimates of MSY and associated fisheries reference points, and 
despite a number of limitations (Maunder 2003, Punt and Szuwalski 2012), remain an integral tool 
for data-limited to -moderate stock assessments (Dichmont et al. 2016, Punt et al. 2015). The main 
limitations of SPMs is that they ignore the stock’s size/age structure and therefore fail to account for 
dynamics in gear selectivity (Wang et al. 2014) and lagged effects of recruitment and mortality (Aalto 
et al. 2015, Punt and Szuwalski 2012), which can both lead to biased assessment results. However, 
SPMs have been considerably enhanced by the introduction of Bayesian methods with improved 
prior formulations, development of frameworks that allow incorporating both observation and 
process errors, and Bayesian state-space modelling approaches (Winker et al. 2018). 
  In our analysis, CMSY+ estimated similar MSY and relative toothfish biomass in the final year 
as did CASAL, but its absolute biomass estimate was substantially lower. The main shortcoming of 
CMSY+ assessment was its sensitivity to the changes in prior for the ending relative stock biomass. 
As already described, design of the model is such that only the estimates of ending relative biomass 
which fall within its assumed prior range are kept, making it impossible for the model to recover 
from incorrectly set prior (i.e. incorrect assumption of the current stock status). To an extent this can 
be mitigated by selecting broad prior ranges (Froese et al. 2017), but our sensitivity analysis showed 
that even relatively small changes of the prior range can lead to a very different current stock status 
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estimate, making the usefulness of CMSY+ model for Falkland Islands toothfish stock assessment 
questionable. 

JABBA biomass estimates were lower than those obtained by CMSY+, and even less 
resembled the CASAL estimates. One of the advantages of JABBA over CMSY+ is that it doesn’t 
require a prior for relative biomass at the end of the time series, avoiding the need for knowledge of 
the current stock status. It does require a relative biomass prior for the beginning of the time series, 
but sensitivity analysis indicated that differences in starting relative biomass tend to decrease as the 
model progresses towards the final year, making the outcomes more robust against the assumed 
prior. However, the prior for the species intrinsic growth rate r had a large impact on the model 
outcomes and requires more comprehensive exploration. Besides testing of different priors, JABBA 
assessment would also benefit from any improvements in the CPUE data; further options of 
standardizing this data will be explored as a part of the future CASAL stock assessment, and they 
should be introduced to the JABBA model as well. 

Overall, both alternative models produced similar MSY estimates, moderately different 
relative biomass estimates, and substantially different absolute biomass estimates compared to the 
CASAL model. CMSY+ proved of limited use due to its sensitivity to the assumptions about current 
stock status. JABBA makes no assumptions about current stock status, and its relative biomass and 
MSY estimates seemed less susceptible to changes in priors. The JABBA model has potential for 
further use, preferably accompanied by an extensive sensitivity analysis. Compared to both 
alternative models, we consider CASAL as the preferred approach to toothfish stock assessment in 
Falkland Islands, as it is an integrated, age-structured model capable of accounting for dynamics in 
gear selectivity and lagged effects of recruitment and mortality. However, it needs to be stressed 
that the comparison between these models wasn’t straightforward, as they have very different 
formulations. That being said, all three models produced MSY estimates that are above the annual 
toothfish catches taken in the last two years, adding a measure of confidence that the stock was 
exploited in a sustainable manner. Lastly, findings of this report might provide insight into the 
usefulness of CMSY+ and JABBA data-poor approaches for other species/stocks managed by FIFD, 
where data limitations prevent the use of integrated CASAL assessment. 
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Appendix 1. CPUE standardization           back to text 

Spanish- and umbrella-system longline CPUE was standardized using generalized linear model (GLM), 
with a log link function and normally distributed error (Maunder and Starr 2003, Maunder and Punt 
2004). Individual longline haul CPUE values (expressed as toothfish catch in kg per 1000 hooks) were 
the response variable, and the explanatory variables considered in the model are given in Table A.1. 
 
Table A.1. Explanatory variables considered in the CPUE standardization GLM, by fishery and type.  

Explanatory variables 
Variable type 

Spanish-system   umbrella-system 

Year* 
 

Year* Categorical 

Month* 
 

Month* Categorical 

Region* 
 

Region* Categorical 

Depth 
 

Depth Continuous 

Soak-time* 
 

Soak-time* Continuous 

Vessel* 
 

- Categorical 

- 
 

Hooks-per- umbrella* Categorical 

-   Umbrella-spacing Categorical 

* Variables which were found statistically significant and included in the final model. 
 
The Month variable accounts for the seasonal variability in CPUE, and the Region variable 

attempts to capture the spatial distribution of CPUE, divided into three broad areas: (a) within the 
Falklands zone and south of 53.5° S (Burdwood Bank spawning area), (b) within the Falklands zone 
and north of 53.5° S, and (c) outside the Falklands zone. Depth variable is the average fishing depth 
at which longline is set (in meters). Soak-time was calculated in hours-per-hook for Spanish-system 
longline, and hours-per-line for the umbrella-system. Vessel variable was excluded from the 
umbrella-system longline CPUE standardization, as the only two vessels used in the assessment 
never fished concurrently in the same year, making the Vessel and Year effects indistinguishable. The 
umbrella-system had two additional variables: Umbrella-spacing (which was changed from 40 m 
between umbrellas to 22 m between umbrellas after November 2014) and number of Hooks-per-
umbrella (which was progressively decreased from 10 hooks initially to 8 hooks in December 2007, 
to 7 hooks in March 2014, to 6 hooks in June 2016).  

Year effect is the quantity of interest so it must be a part of the final CPUE model, and the 
remaining explanatory variables were added to the Year by forward stepwise selection, and included 
in the final model only if they improved R2 by at least 0.5%. 

Fitting GLM to the Spanish-system data showed that the explanatory variables Year, Month, 
Region, Soak-time and Vessel are statistically significant, although the model explained only 17.1% of 
the overall variation in CPUE. Standardized and unstandardized CPUE time series showed similar 
trends, with high values in the first 4-5 years of fishery, followed by the lower, but relatively steady 
values in the later years (Figure A.1).  

Fitting GLM to umbrella-system data showed that the explanatory variables Year, Month, 
Region, Soak-time and Hooks-per-umbrella are statistically significant, and the model explained 
28.5% of the overall variation in CPUE. Comparison of the umbrella-system standardized and 
unstandardized annual CPUE indexes is shown in Figure A.2. The most prominent feature of the 
unstandardized data is steep increase in CPUE in 2017, followed by the decline during the next two 
years, but still with significantly higher values than in the earlier years of fishery. This corresponds to 
the entry of the new vessel into the fishery, i.e. CFL Hunter replaced the CFL Gambler from the 
beginning of 2017 (as mentioned before, only the data belonging to these two vessels were used in 
the analysis). Second trend is less obvious as it is partially masked by the mentioned ‘new vessel’ 
feature, but broadly speaking, there was an increase in unstandardized CPUE from 2014 to 2019. 
This can be explained by the decrease in the number of hooks-per-umbrella, introduced voluntarily 
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by vessel operators over time. Since hooks are set in clusters, reducing their number from 8 to 7 to 6 
didn’t affect the catches per umbrella much, but it was perceived as the reduced effort (calculated 
as the total number of hooks per longline set) and lead to an increase in unstandardized CPUE. 
However, the number of hooks-per-umbrella was significant explanatory variable in GLM, and in the 
standardized CPUE time series this increasing trend was removed. It is worth pointing out that the 
option of using the umbrellas instead of hooks as the unit of effort was explored as well, but the 
results were almost exactly the same as when using hooks and having hooks-per-umbrella as a 
significant explanatory variable in GLM.  

The distribution of the residuals from the GLM fit to Spanish- and umbrella-system data was 
consistent with the assumption of normality (Figure A.3). 

 

 
Figure A.1. Spanish-system longline CPUE time series: unstandardized CPUE expressed as toothfish catch in kg 
per hook (left), and standardized CPUE indices from the GLM (right); shaded areas correspond to 95% 
confidence intervals. 

 
 

 
Figure A.2. Umbrella-system longline CPUE time series: unstandardized CPUE expressed as toothfish catch in 
kg per hook (left), and standardized CPUE indices from the GLM (right); shaded areas correspond to 95% 
confidence intervals. 
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Figure A.3. Density histograms of residuals from the generalized linear model (GLM) fitted to the Spanish- and 
umbrella-system longline CPUE data. 

 

  



22 

 

Appendix 2. Input parameters           back to text 

Table A.2. Total toothfish removals for combined fisheries, and standardized CPUE indices with standard errors 
for Spanish- and umbrella-system longline fisheries. 

Year 
Removals 

(tonnes) 

 CPUE indices  CPUE standard errors 

 
Spanish-

system 
umbrella-

system 
 

Spanish-
system 

umbrella-
system 

1987 23  - -  - - 

1988 127  - -  - - 

1989 235  - -  - - 

1990 208  - -  - - 

1991 980  - -  - - 

1992 926  - -  - - 

1993 394  - -  - - 

1994 3411  - -  - - 

1995 2656  - -  - - 

1996 856  1.536 -  0.092 - 

1997 1585  1.714 -  0.078 - 

1998 2882  1.371 -  0.058 - 

1999 4385  1.700 -  0.053 - 

2000 3185  1.380 -  0.052 - 

2001 2242  0.968 -  0.053 - 

2002 2147  0.893 -  0.052 - 

2003 2201  0.891 -  0.055 - 

2004 2533  0.911 -  0.056 - 

2005 2119  0.808 -  0.059 - 

2006 1659  0.744 -  0.061 - 

2007 1950  0.774 1.247  0.083 0.238 

2008 1806  - 0.895  - 0.097 

2009 1613  - 1.041  - 0.100 

2010 1552  - 1.005  - 0.091 

2011 1782  - 0.959  - 0.087 

2012 1530  - 0.934  - 0.088 

2013 1697  0.361 0.995  0.388 0.088 

2014 1462  - 0.882  - 0.071 

2015 1456  - 0.957  - 0.078 

2016 1718  - 0.953  - 0.106 

2017 1702  - 1.154  - 0.165 

2018 1449  - 1.084  - 0.160 

2019 1495  - 0.954  - 0.156 

 

 

 

 


