
Scientific Report

Fisheries Research Cruise ZDLH1-09-2004

Fisheries Department Falkland Islands Government **Scientific Report**

Fisheries Research Cruise

ZDLH1-09-2004

FPRV Dorada

30 August to 24 September 2004

Fisheries Department Falkland Islands Government Stanley Falkland Islands

Participating scientific staff (alphabetical)	Principal author of section
Dr. Alexander Arkhipkin	1, 4.1.7, scientific editor
Teresa Athayde	
Sandra Cordes	
Dr. Vlad Laptikhovsky	3
Michael Hattersley	
Gustavo Macchi	
Joost Pompert	2, 4.1.2-4.1.6
Norberto Scarlato	
Dr. Lianos Triantafillos	4.1.1, scientific editor

© Crown Copyright 2005.

No part of this publication may be reproduced without prior permission from the Falkland Islands Government Fisheries Department.

For citation purposes this publication should be referenced as follows:

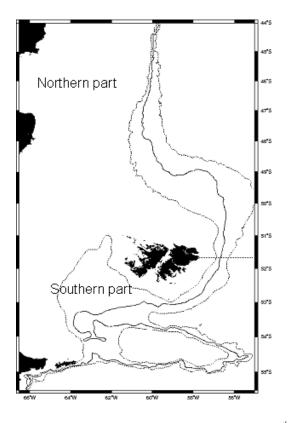
Falkland Islands Government (2005). Scientific Report, Fisheries Research Cruise ZDLH-09-2004. Stanley, Falkland Islands Government Fisheries Department.

Printed by the Falkland Islands Government Printing Office, Stanley, Falkland Islands.

Table of contents

1. Introduction	
1.1 Region and Cruise objectives1	
1.2 Cruise plan and key dates	
1.3 Vessel characteristics	,
1.4 Personnel and responsibilities	,
1.5 Equipment used	
Acoustics	
Trawling	
Oceanographic	
2. Sampling	
2.1 Acoustic surveying	
2.2 Trawl stations and biological sampling	
2.3 Length-frequency sampling	
2.4 Otolith sampling	
2.5 Muscle tissue sampling	
2.6 Gonad sampling	
3. Oceanographic methods	,
3.1 Oceanographic sampling	,
3.2 Results	,
4. Biological sampling	I
4.1 Catch and by-catch	
4.1.1 Micromesistius australis australis	,
4.1.2 Macruronus magellanicus	
4.1.3 Macrourus carinatus	j
4.1.4 Merluccius hubbsi and M. australis27	
4.1.5 Gymnoscopelus nicholsi	j
4.1.6 Patagonotothen ramsayi	
4.1.7 Loligo gahi)

1. Introduction


In September 2004, another joint UK-Argentine survey of southern blue whiting was conducted on the shelf of the Southwest Atlantic. Two vessels participated in the survey, namely the Falkland Islands Research and Patrol Vessel *Dorada* and Argentine Research Vessel *Dr Eduardo L. Holmberg*. It was decided that this year the R/PV *Dorada* would do an extensive trawl survey outside the main spawning grounds of southern blue whiting, whereas the R/V *Dr Eduardo L. Holmberg* would do an acoustic survey of the spawning area of southern blue whiting to the south of the Falkland Islands (Islas Malvinas). The following report summarises the research activities carried out on the R/PV *Dorada*.

1.1 Region and Cruise objectives

The survey was conducted on the northern, eastern and southern shelf of the Falkland Islands (Islas Malvinas), the southwestern deep shelf region of these islands and on the continental slope north and south of Isla de Los Estados (Staten Island) (Fig. 1).

The four objectives of the research cruise were to:

- 1. conduct a trawl survey to identify the stock distribution of southern blue whiting and other commercial species during the peak spawning period of southern blue whiting;
- 2. study oceanographic conditions over the survey area;
- 3. collect routine biological samples of most commercial species;
- 4. collect additional ad hoc acoustic data along the track of the trawl survey, to supplement the acoustic survey carried out on the R/V *Dr Eduardo L. Holmberg*.

Figure 1. Location of the research cruise ZDLH1-09-2004 undertaken between 30th Aug. and 24th Sept. 2004. The dotted line separates the southern and northern parts the cruise.

1.2 Cruise plan and key dates

The primary aim of the first objective was to identify the distribution and abundance of southern blue whiting over the wider shelf and slope area outside its main spawning areas south of the Falkland Islands. The survey coincided with a single snapshot acoustic survey of the main spawning grounds by the Argentine R/V *Dr*. *Eduardo L. Holmberg*.

The survey area covered the entire slope area from Isla de Los Estados (Staten Island) in the south to 45° S in the north, between the depths of 200 and 700 metres. On the rare occasion, trawl depth was decreased to 120 m to allow for placement of some trawls in the main spawning area south of the Falkland Islands. For the purposes of this report, the survey area was split into two regions, north and south of 51.7° S (Fig. 1).

The cruise departed from Stanley for the northern part of the survey on the 30^{th} August 2004 and the first trawl began at approximately 06:00 am the next morning. When this part of the survey (which included the High Seas region of 45-47°S) was completed, there was a port call to Stanley on the afternoon of September 10^{th} . The second (southern) part of the survey began on the 11^{th} September and ended on 24^{th} September, 2004 with a total of 26 days spent at sea. Two UK scientists were transferred from the R/PV *Dorada* to the R/V *Dr. Eduardo L. Holmberg* on the 13^{th} September.

Due to inclement weather, the scheduled survey plan was uncompleted. Four days were lost during the first part of the survey with a further five days lost during the second part. This resulted in some southern transects of the northern part not being surveyed. It also resulted in the cancellation of most transects in the west, except for the ones near Isla de los Estados. A further day was lost due to the failure of the hydraulic pump.

1.3 Vessel characteristics

The cruise was conducted on board the R/PV *Dorada*, which is registered in the Falkland Islands. The characteristics of this vessel are shown in Table 1.

Callsign	ZDLH1
Length	76 m
GRT	2360 t
NRT	708 t
Crew	16 people

1.4 Personnel and responsibilities

The following UK and Argentine personnel participated in the cruise:

Dr. Alexander Arkhipkin	C. Scientist (UK)	
Dr. Vlad Laptikhovsky	Oceanography(UK)	
Joost Pompert	Fisheries Biologist (UK)	
Sandra Cordes	Fisheries Biologist (UK)	
Dr. Lianos Triantafillos	Fisheries Biologist (UK)	(30 Aug – 13 Sept.)
Michael Hattersley	Fisheries Biologist (UK)	(30 Aug – 13 Sept.)
Teresa Athayde	Fisheries Biologist (UK)	(14 – 24 Sept.)
Norberto Scarlato	C. Scientist (AR)	
Gustavo Macchi	Reproductive Biology (AR)	

1.5 Equipment used

Acoustics

The acoustic instrumentation was similar to that used in previous surveys. This included:

1. Scientific echosounder SIMRAD EK500 38/120 KHz;

2. Sonardata Echolog (data acquisition) and Echoview (post-processing) software.

The EK500 was triggered with a ping interval of approximately 2 seconds. Triggering was synchronised with the Furuno Doppler log to reduce acoustic interference. Data was logged with Sonardata Echolog and processed with Echoview.

Trawling

All trawl stations used an ENGEL semi-pelagic trawl with a 40.2 m headline and a 38.7 m footrope equipped with rockhoppers. The mesh size at the cod-end was 95 mm and a 40 mm cod-end liner was used. The doors were Super-V style weighing 1200 kg and with an area of 6 m^2 . The trawl was equipped with SIMRAD ITI sensors. The typical vertical opening of the trawl was between 10 and 15 m when fishing either semi-pelagically or near the bottom.

Oceanographic

The oceanographic equipment was similar to that used in previous surveys. This included:

1. CTD SBE 25 with oxygen sensor and SeaTech fluorometer;

2. Thermosalinometer SBE45.

2. Sampling

2.1 Acoustic surveying

Acoustic data were logged along the entire track of the trawl survey. These data were archived (in Sonardata EK5 format) on a PC running Sonardata Echolog500 and then transferred to Ing. A. Madirolas on the R/V *Dr Eduardo L. Holmberg* for further post-processing and interpretation.

2.2 Trawl stations and biological sampling

A total of 52 trawl stations (of some 96 planned) were conducted with the Engel trawl between 31/08/04 and 23/09/04. Station numbers ranged from 1785 to 1907 (Table 2).

Catches at all stations were weighed using an electronic, marine adjusted balance (POLS, min 10g, and max 80kg). Commercial finfish species were measured (total or pre-anal length) to the nearest centimetre below and both sex and stage of maturity were recorded. Individual weight was measured to the nearest gram using the POLS balance (min. 1gram, max. 13kg) or, for larger specimens, to the nearest 20 grams using the Scanvaegt balances. The diet composition of some species was also recorded.

Table 2. Dates, locations, modal depths and duration of oceanographic (CTD) and trawl (Semi-Pelagic) stations carried out during the research cruise ZDLH1-09-2004 undertaken from the 30th Aug to 24th September, 2004.

Station	Activity	Date	Start Time	Start Latitude	Start Longitude	Modal Depth (m)	Duration (min)
1784	CTD	31/08/04	06:30	50° 0.3 S	56° 44.5 W	449	17
1785	Semi-Pelagic	31/08/04	07:22	49° 59.4 S	$56^{\circ} 44.7 \text{ W}$	420	65
1786	CTD	31/08/04	10:30	50° 7.7 S	57° 1.9 W	389	16
1787	Semi-Pelagic	31/08/04	10:57	50° 7.3 S	$57^{\circ} 2 W$	383	78
1788	CTD	31/08/04	13:33	$50^{\circ} 16 \mathrm{S}$	$57^{\circ} 20 \mathrm{W}$	352	14
1789	Semi-Pelagic	31/08/04	13:57	50° 15.6 S	57° 19.8 W	347	83
1790	Semi-Pelagic	31/08/04	16:48	50° 26.2 S	$57^{\circ} 41.6 \ W$	226	73
1791	CTD	31/08/04	18:35	$50^{\circ} 24.6 \text{ S}$	$57^{\circ} 47.8 \text{ W}$	214	11
1792	CTD	01/09/04	06:28	49° 13 S	$58^{\circ} 44.6 \mathrm{W}$	455	17
1793	Semi-Pelagic	01/09/04	06:49	49° 13.1 S	$58^{\circ} 44.5 \text{ W}$	468	90
1794	CTD	01/09/04	09:57	49° 23.8 S	59° 3.8 W	420	16
1795	Semi-Pelagic	01/09/04	10:21	49° 23.6 S	59° 3.1 W	431	83
1796	CTD	01/09/04	13:24	49° 33 S	59° 19.4 W	364	14
1797	Semi-Pelagic	01/09/04	13:43	49° 32.9 S	59° 18.6 W	370	87
1798	Semi-Pelagic	01/09/04	16:35	49° 42.6 S	59° 37 W	196	52
1799	CTD	01/09/04	19:05	49° 41.2 S	59° 41.4 W	195	9
1800	CTD	02/09/04	06:33	48° 31.9 S	$60^{\circ} 40.5 \ \mathrm{W}$	260	11
1801	Semi-Pelagic	02/09/04	06:51	48° 31.6 S	$60^{\circ} 40.2 \text{ W}$	263	69
1802	CTD	02/09/04	09:30	$48^{\circ} 25.4 \text{ S}$	$60^{\circ} 21.6 \mathrm{W}$	372	16
1803	Semi-Pelagic	02/09/04	09:53	$48^{\circ} 25.2 \text{ S}$	$60^{\circ} 21.8 \text{ W}$	385	79
1804	CTD	02/09/04	12:26	48° 19.9 S	60° 4.4 W	473	18
1805	Semi-Pelagic	02/09/04	12:51	48° 19.3 S	60° 4.2 W	472	87
1806	Semi-Pelagic	02/09/04	15:48	48° 12.8 S	$59^{\circ} 40.7 \text{ W}$	630	124
1807	CTD	02/09/04	18:29	48° 3.9 S	59° 43.3 W	665	25
1808	CTD	03/09/04	06:43	46° 58.1 S	$60^{\circ} 48.2 \mathrm{W}$	213	10
1809	Semi-Pelagic	03/09/04	09:52	46° 58.2 S	$60^{\circ} 47.6 \ \mathrm{W}$	232	66
1810	CTD	03/09/04	12:29	$46^{\circ} 56.4 \mathrm{S}$	60° 34.3 W	374	14
1811	Semi-Pelagic	03/09/04	12:50	46° 56.5 S	60° 33.8 W	383	76
1812	CTD	03/09/04	15:52	47° 2 S	60° 10.6 W	635	24

Station	Activity	Date	Start Time	Start Latitude	Start Longitude	Modal Depth (m)	Duration (min)
1813	Semi-Pelagic	03/09/04	16:21	47° 2.5 S	60° 10.5 W	651	126
1814	CTD	05/09/04	06:39	45° 11.9 S	$60^{\circ} 2.8 \text{ W}$	152	7
1815	Semi-Pelagic	05/09/04	07:34	45° 12 S	60° 3.1 W	148	62
1816	CTD	05/09/04	09:17	45° 12 S	60° 1.6 W	214	10
1817	Semi-Pelagic	05/09/04	09:34	45° 12.1 S	60° 1.3 W	230	68
1818	Semi-Pelagic	05/09/04	17:53	45° 17 S	59° 59.9 W	322	70
1819	CTD	05/09/04	19:17	$45^{\circ} 20 \text{ S}$	59° 59.8 W	359	16
1820	CTD	05/09/04	20:00	45° 19.7 S	59° 55.1 W	644	24
1821	CTD	06/09/04	07:04	46° 18.4 S	$60^{\circ} 17.8 \text{ W}$	178	8
1822	Semi-Pelagic	06/09/04	07:25	46° 18 S	60° 18.1 W	150	58
1823	CTD	06/09/04	08:50	46° 14.4 S	60° 15.1 W	230	9
1824	Semi-Pelagic	06/09/04	09:17	46° 15.1 S	60° 14.7 W	237	71
1825	CTD	06/09/04	11:03	46° 18.7 S	60° 12.4 W	363	13
1826	Semi-Pelagic	06/09/04	11:30	46° 19.3 S	60° 12.3 W	356	97
1827	CTD	06/09/04	14:00	46° 23.8 S	$60^{\circ} 6.1 \text{ W}$	610	21
1828	Semi-Pelagic	06/09/04	14:29	46° 22.9 S	$60^{\circ} 6.2 \text{ W}$	589	122
1829	Semi-Pelagic	06/09/04	18:22	46° 8.1 S	60° 13 W	223	82
1830	CTD	07/09/04	07:00	47° 43 S	$60^{\circ} 6.6 \text{ W}$	608	19
1831	CTD	09/09/04	06:41	50° 48.6 S	56° 49.2 W	359	14
1832	Semi-Pelagic	09/09/04	07:18	50° 48.3 S	$56^{\circ} 50.7 \text{ W}$	319	81
1833	CTD	09/09/04	09:50	50° 51.9 S	56° 56.1 W	233	10
1834	CTD	09/09/04	11:46	50° 46.8 S	56° 32.3 W	451	11
1835	Semi-Pelagic	09/09/04	12:06	50° 46.6 S	56° 32.3 W	447	96
1836	CTD	09/09/04	15:02	50° 46.2 S	56° 14.6 W	621	23
1837	CTD	11/09/04	09:59	51° 39.5 S	57° 45.4 W	18	3
1838	CTD	11/09/04	10:56	51° 42 S	57° 33 W	98	5
1839	CTD	11/09/04	11:49	51° 44 S	$57^{\circ} 22.2 \text{ W}$	188	8
1840	Semi-Pelagic	11/09/04	12:07	51° 43.1 S	$57^{\circ} 20.6 \mathrm{W}$	209	67
1841	CTD	11/09/04	14:03	51° 43.8 S	$57^{\circ} 8.5 \text{ W}$	294	11
1842	Semi-Pelagic	11/09/04	14:29	51° 44 S	$57^{\circ} 5.6 \mathrm{W}$	351	85
1843	Semi-Pelagic	11/09/04	16:18	51° 49 S	$57^{\circ} 2 W$	439	115
1844	CTD	11/09/04	19:44	51° 44 S	56° 41 W	529	17
1845	CTD	11/09/04	21:51	51° 46 S	$56^{\circ} 10 \text{ W}$	1004	36
1846	CTD	12/09/04	00:19	51° 45 S	55° 36.8 W	1147	43
1847	CTD	12/09/04	07:34	52° 31.3 S	57° 2.9 W	678	24
1848	Semi-Pelagic	12/09/04	08:13	52° 29.7 S	57° 4.7 W	595	108
1849	CTD	12/09/04	11:43	$52^{\circ} 25.6 \text{ S}$	57° 19.2 W	397	15
1850	Semi-Pelagic	12/09/04	12:11	52° 26.3 S	57° 16.7 W	439	87
1851	CTD	12/09/04	15:10	52° 20 S	57° 33.3 W	349	16
1852	CTD	12/09/04	20:52	52° 15.4 S	57° 45.9 W	244	9
1853	CTD	13/09/04	06:34	52° 58.3 S	57° 53.4 W	606	23
1854	CTD	13/09/04	08:00	$52^{\circ} 50.4 \text{ S}$	$58^{\circ} 2.4 \text{ W}$	453	18
1855	Semi-Pelagic	13/09/04	09:21	52° 42.3 S	58° 13.3 W	406	109
1856	CTD	13/09/04	11:59	52° 40.5 S	58° 13.7 W	418	16
1857	Semi-Pelagic	13/09/04	13:32	52° 36.7 S	58° 18.2 W	322	89
1858	Semi-Pelagic	13/09/04	15:51	52° 35.9 S	58° 26.1 W	243	71
1859	CTD	13/09/04	18:36	52° 31.4 S	58° 23.3 W	199	9
1860	CTD	13/09/04	20:52	52° 18.9 S	58° 56.3 W	67	6
1861	CTD	13/09/04	22:45	52° 31.2 S	59° 12.4 W	62	3
1862	CTD	14/09/04	00:27	52° 47.4 S	59° 8.4 W	105	5
1863	CTD	14/09/04	06:37	52° 58.6 S	59° 4.9 W	197	10
1864	Semi-Pelagic	14/09/04	07:09	52° 58.7 S	59° 4.2 W	219	73

Station	Activity	Date	Start Time	Start Latitude	Start Longitude	Modal Depth (m)	Duration (min)
1865	CTD	14/09/04	08:51	52° 59.8 S	59° 5 W	304	12
1866	Semi-Pelagic	14/09/04	09:12	52° 59.9 S	59° 5.3 W	315	75
1867	Semi-Pelagic	14/09/04	14:11	53° 1.5 S	59° 3.6 W	415	92
1868	CTD	14/09/04	16:11	53° 6.1 S	59° 4 W	510	20
1869	Semi-Pelagic	14/09/04	17:35	53° 13.2 S	59° 4.6 W	605	118
1870	CTD	14/09/04	20:25	53° 15.2 S	59° 1.8 W	674	25
1871	CTD	14/09/04	21:37	53° 20.8 S	59° 0.3 W	1170	42
1872	CTD	15/09/04	06:35	53° 11 S	$60^{\circ} 27.1 \text{ W}$	579	22
1873	Semi-Pelagic	15/09/04	07:24	53° 12.4 S	$60^{\circ} 26.4 \text{ W}$	585	122
1874	CTD	15/09/04	11:19	53° 0 S	$60^{\circ} 20.9 \mathrm{W}$	465	18
1875	Semi-Pelagic	15/09/04	18:38	52° 53.3 S	60° 14.6 W	320	80
1876	CTD	15/09/04	20:30	52° 52.4 S	$60^{\circ} 17.1 \text{ W}$	287	13
1877	CTD	15/09/04	21:55	52° 45.8 S	60° 12.1 W	199	8
1878	CTD	16/09/04	06:29	$52^{\circ} 26.4 \text{ S}$	60° 48.4 W	197	11
1879	Semi-Pelagic	16/09/04	07:14	$52^{\circ} 25.6 \text{ S}$	60° 48.4 W	187	59
1880	CTD	16/09/04	09:23	52° 33.2 S	60° 53.2 W	290	11
1881	Semi-Pelagic	16/09/04	10:00	52° 32.6 S	60° 52.2 W	296	84
1882	CTD	16/09/04	12:32	52° 39.1 S	$60^{\circ} 57.7 \text{ W}$	365	15
1883	Semi-Pelagic	16/09/04	12:53	52° 38.8 S	60° 56.8 W	361	82
1884	CTD	16/09/04	16:47	$52^{\circ} 52.4 \text{ S}$	$61^{\circ} 8.2 \text{ W}$	371	16
1885	Semi-Pelagic	16/09/04	18:10	53° 3.8 S	61° 8.5 W	468	116
1886	CTD	16/09/04	21:20	53° 1.9 S	61° 16.2 W	447	16
1887	CTD	20/09/04	10:53	54° 54.3 S	65° 11.9 W	103	5
1888	CTD	20/09/04	14:20	54° 55.9 S	$64^{\rm o} 22 \ { m W}$	381	14
1889	Semi-Pelagic	20/09/04	14:43	54° 55.5 S	$64^{\circ} 20.1 \text{ W}$	351	87
1890	CTD	20/09/04	16:48	$54^{\rm o}~50.6~{ m S}$	$64^{\rm o}$ 0.6 W	151	8
1891	Semi-Pelagic	20/09/04	17:18	54° 49.6 S	63° 55.9 W	173	71
1892	Semi-Pelagic	20/09/04	19:15	54° 49.3 S	63° 47.2 W	259	85
1893	CTD	22/09/04	06:26	52° 27.1 S	$62^{\circ} 21.8 \text{ W}$	291	13
1894	Semi-Pelagic	22/09/04	07:20	52° 28 S	$62^{\circ} 20 \text{ W}$	289	75
1895	CTD	22/09/04	09:38	52° 23 S	62° 2.9 W	299	13
1896	Semi-Pelagic	22/09/04	09:57	52° 22.9 S	62° 2.3 W	295	76
1897	CTD	22/09/04	12:17	52° 16.8 S	61° 45.7 W	317	13
1898	Semi-Pelagic	22/09/04	12:37	52° 16.6 S	61° 44.4 W	324	86
1899	CTD	22/09/04	14:38	52° 14.1 S	61° 29.9 W	241	11
1900	Semi-Pelagic	22/09/04	15:35	52° 14.7 S	61° 19.8 W	178	100
1901	CTD	22/09/04	17:42	52° 10.6 S	61° 17.2 W	159	8
1902	CTD	23/09/04	07:05	51° 38.6 S	61° 8 W	72	5
1903	Semi-Pelagic	23/09/04	07:50	51° 39.2 S	$61^{\circ} 0.8 \mathrm{W}$	72	64
1904	CTD	23/09/04	10:33	51° 43.7 S	$60^{\circ} 45 \text{ W}$	42	3
1905	CTD	23/09/04	11:44	51° 34.8 S	60° 35.7 W	61	4
1906	CTD	23/09/04	13:21	51° 26.6 S	$60^{\circ} 51 \text{ W}$	74	3
1907	Semi-Pelagic	23/09/04	13:41	51° 26.5 S	$60^{\circ} 50.7 \mathrm{W}$	76	57
1908	CTD	23/09/04	17:06	51° 22.3 S	60° 27.6 W	32	5

2.3 Length-frequency sampling

A minimum of 100 individuals (or the entire catch if the catch was less than 100 individuals) of *Micromesistius australis australis* were randomly sampled. Each individual was measured for the following: total length (cm), weight (g); sex, and maturity stage. Occasionally, gonad weight and liver weight were also recorded for this species.

2.4 Otolith sampling

Due to the small number of southern blue whiting caught, otoliths were only collected on two occasions. On both these occasions, the sagittae were removed with plastic forceps, cleaned of any traces of mucus and blood, and stored separately. One sagittae of each of the 72 fish sampled was given to the Argentine and UK scientists.

2.5 Muscle tissue sampling

Two muscles tissue samples were taken from all the fish that were sampled in detail, with both the UK scientists and Argentine scientists getting a piece each. The tissue was collected by making two parallel cuts with a scalpel blade on the left flank of the fish, several millimetres apart. A strip, no wider than 5mm and not longer than 20mm, was removed with a scalpel and plastic forceps and stored in a labelled vial filled with 96% ethanol. To ensure there was no contamination, both the scalpel and forceps were rinsed in a sea water bath prior to the removal of the next sample.

2.6 Gonad sampling

The ovaries of 52 adult females were removed within 2 hours of the catch arriving on the deck. Most of these ovaries (n = 45) were taken from station 1867, with the remainder taken from various stations. To preserve these ovaries, each one was placed in a labelled plastic bag that was perforated, and then dropped in a sealable drum containing 10% Buffered Formol Saline solution (around 40-50 gonads per 20 litres of solution).

3. Oceanographic methods

3.1 Oceanographic sampling

A logging CTD (SBE-25, Sea-Bird Electronics Inc., Bellevue, USA) was used to obtain profiles of temperature (°C), salinity (PSU), and dissolved oxygen (ml l⁻¹) at 72 oceanographic stations (Table 2; Fig. 2). The CTD was deployed for one minute at each station to a depth of between 8-10 m, to allow the oxygen sensor to polarise. It was then winched up to a depth of one metre and deployed to either a depth about 10-20 m above the sea bottom (shelf and continental slope) or down to 1000 m in the open sea. The speed of deployment was approximately 1m/s and was monitored by wire counter. While temperature was measured directly, the other variables were calculated using the Seasoft v.4.326 software (Sea-Bird Electronics Inc.) and the following measured parameters: pressure (db), conductivity (S/m), oxygen current (μ A) and oxygen temperature (°C). This software was also used to construct vertical profiles of temperature, salinity and density of each station while the VG griding method in the Ocean Data View package v. 5.2-2000 (Schlitzer 2000) was used to construct profiles and iso-surfaces for each transect.

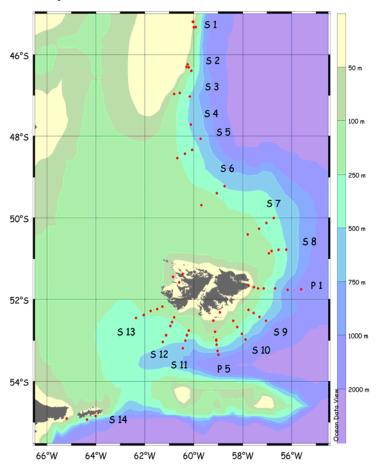


Figure 2. Location of oceanographic transects conducted on the research cruise ZDLH1-09-2004.

3.2 Results

CTD stations covered the offshore part of Patagonian shelf from of Isla de Los Estados (Staten Island) in the south to 45°S in the north. Throughout this region, temperatures ranged from 3.2° to 6.7°C, salinity from 32.2 to 34.3 psu, oxygen from 4.6 to 7.4 ml/l, and densities from 25.4 to 27.3 kg/m³. A comparison of oceanographic features at regularly sampled transects P1 and P5 revealed that the hydroclimatic situation at this time of the year was similar to that in previous years. However, both 2003 and 2004 were much warmer than the previous 3 years. The spatial distribution of temperature, salinity, oxygen, and chlorophyll "a" at the different horizons are shown in Figs. 3-5, while the vertical profiles of temperature, salinity, oxygen and chlorophyll "a" for each oceanographic transect are shown in Figs 6-20.

The maximum abundance of chlorophyll "a" was found at the southern blue whiting spawning grounds south- and southeast of the Falkland Islands. High abundances were also discovered in shallow waters of King George Bay and Queen Charlotte Bay, and above the shelf edge at 45-46°S (Fig 3). By contrast, the lowest abundances of chlorophyll "a" were found in an area east of the Falkland Islands. This low abundance was probably due to the impact of the Falkland Current.

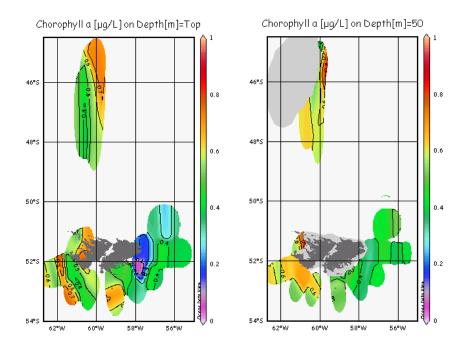


Figure 3. Iso-surface of chlorophyll "a" found at the surface and at a depth of 50m depth during the research cruise ZDLH1-09-2004.

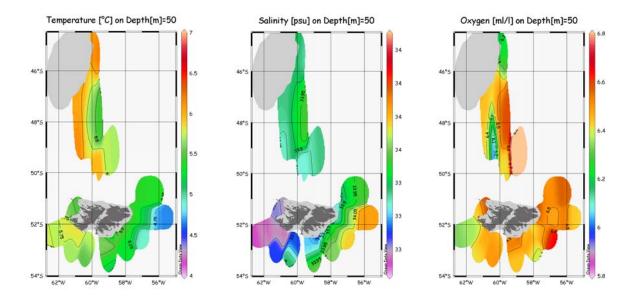
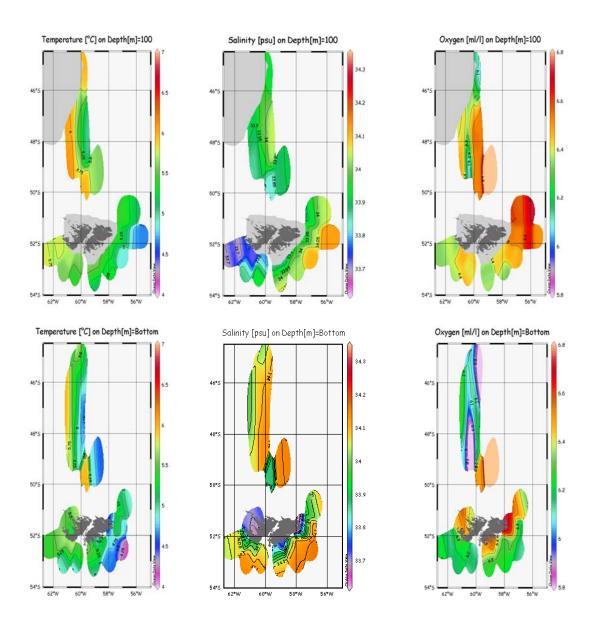



Figure 4. Iso-surface of temperature, salinity and oxygen at the surface and at a depth of 50m during the research cruise ZDLH1-09-2004.

Figure 5. Iso-surface of temperature, salinity and oxygen found at a depth of 100 m during research cruise ZDLH1-09-2004.

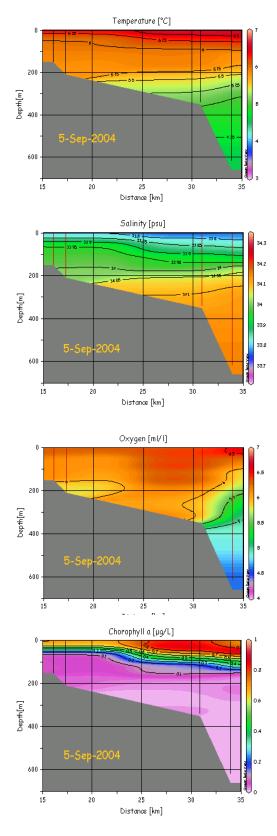
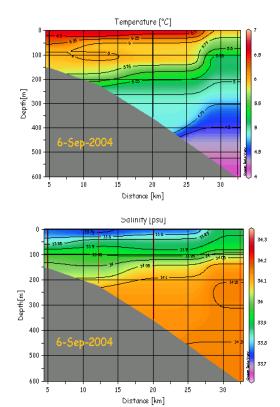
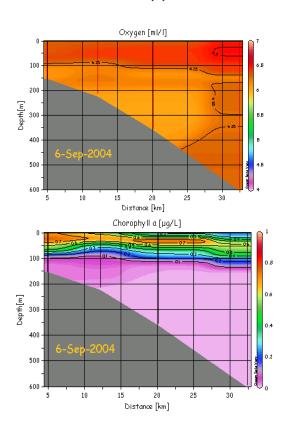
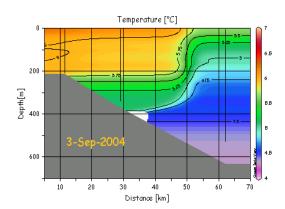
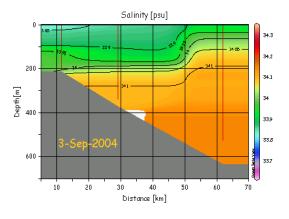
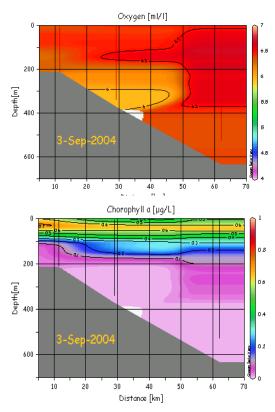
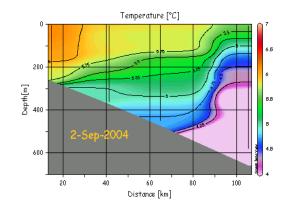
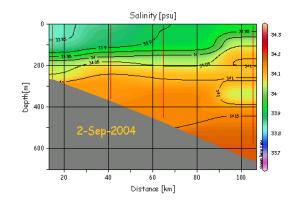
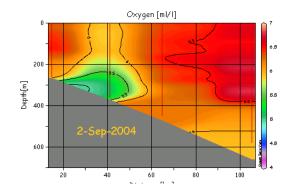



Figure 6. Contoured vertical sections for transect S1


Figure 7. Contoured vertical sections for transect S2



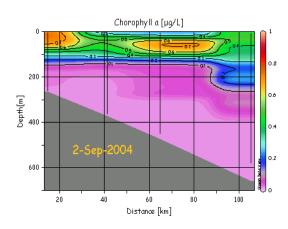
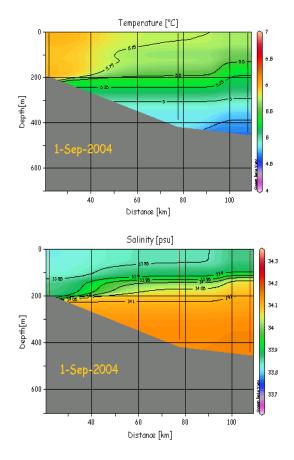



Figure 8. Contoured vertical sections for transect S3

Figure 9. Contoured vertical sections for transect S5

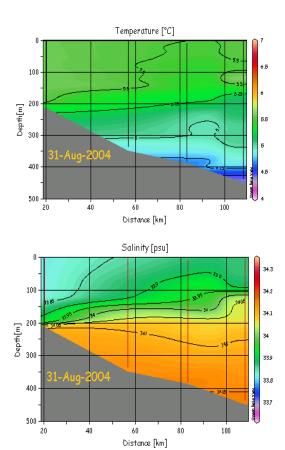
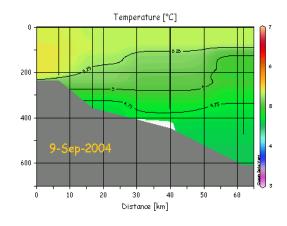
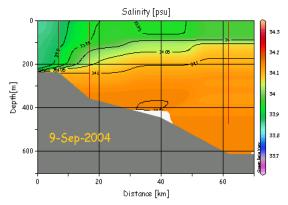
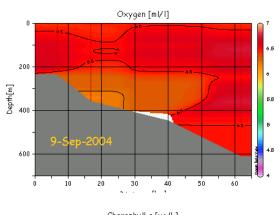





Figure 10. Contoured vertical sections for transect S6

Figure 11. Contoured vertical sections for transect S7

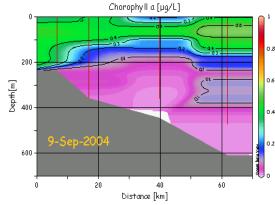
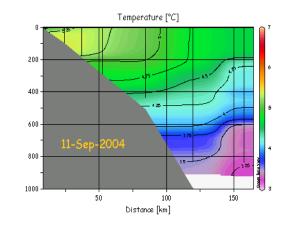
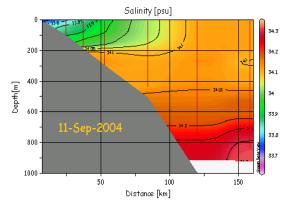
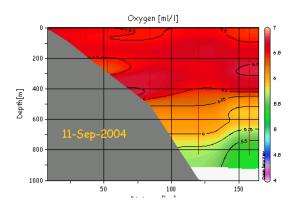





Figure 12. Contoured vertical sections for transect S8

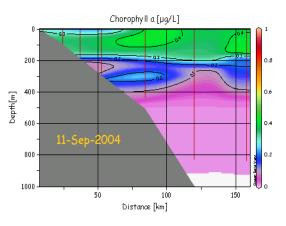


Figure 13. Contoured vertical sections for transect P1

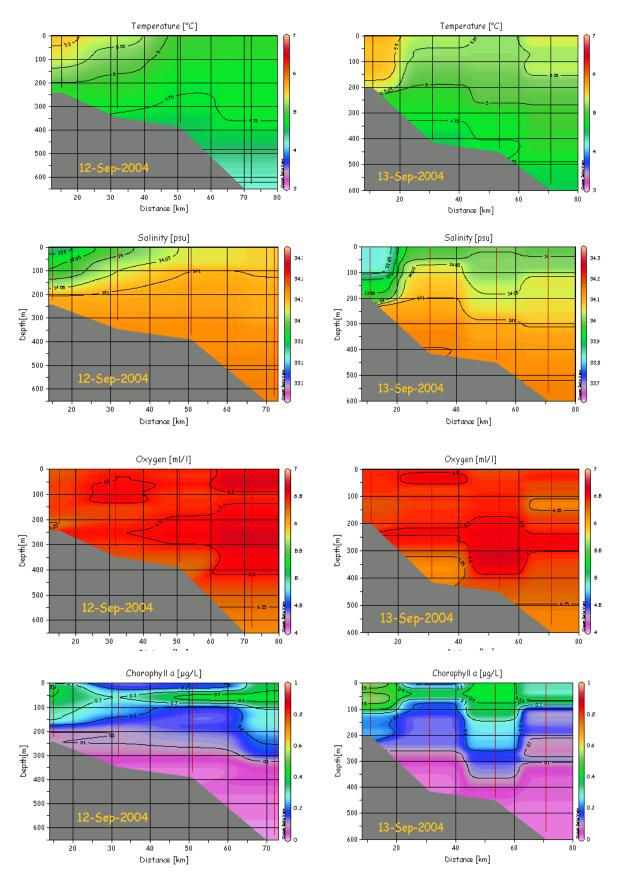
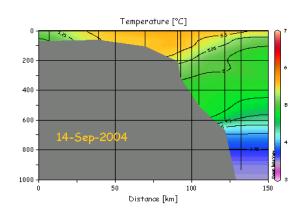
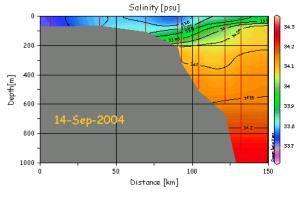
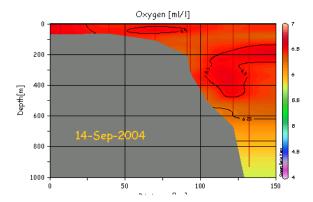





Figure 14. Contoured vertical sections for transect S9

Figure 15. Contoured vertical sections for transect S10

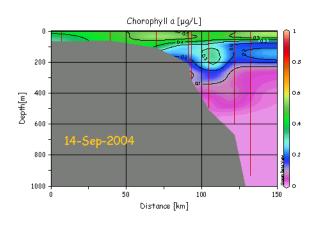
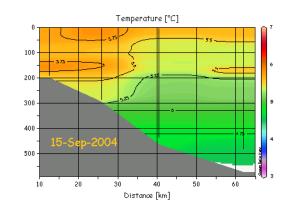
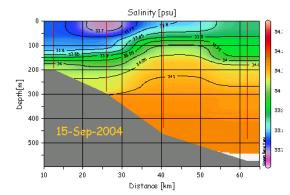
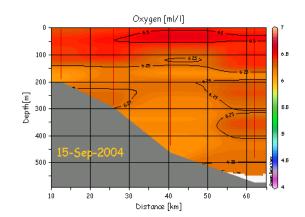





Figure 16. Contoured vertical sections for transect P5

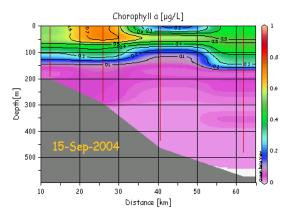
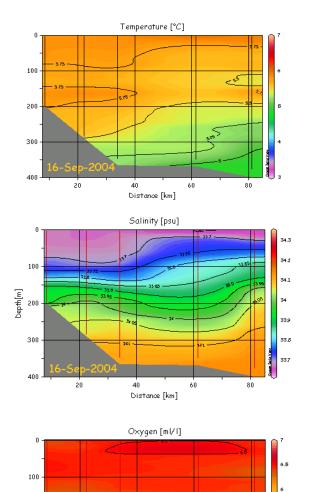
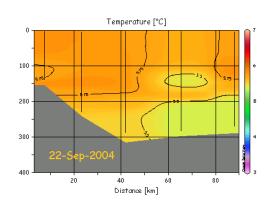
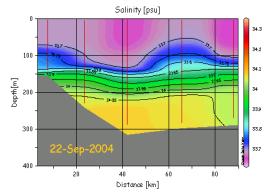
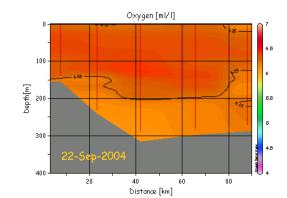






Figure 17. Contoured vertical sections for transect S11

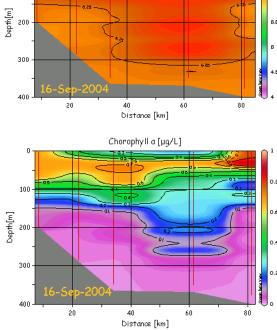


Figure 18. Contoured vertical sections for transect S12

Figure 19. Contoured vertical sections for transect S13

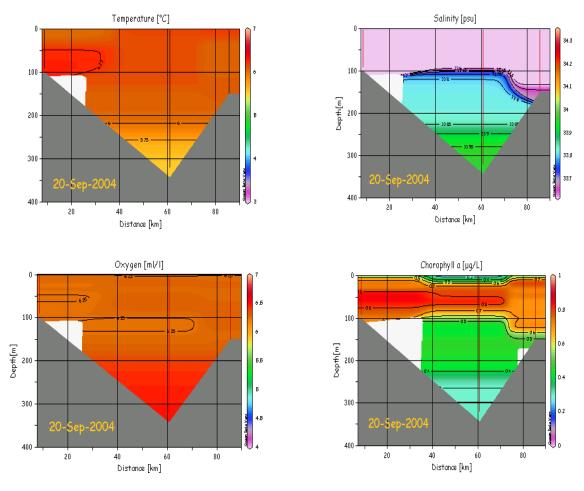


Figure 20. Contoured vertical sections for transect S14

4. Biological sampling

4.1 Catch and by-catch

The location of the 52 Semi-Pelagic trawls conducted with the Engel-Netze trawl during this cruise are shown in Fig. 21. In total, 5,976.56 kg was caught, with 1,929.045 kg of that sampled (Table 3). In terms of weight, the greatest overall catch was Hoki *Macruronus magellanicus*, followed by grenadier *Macrourus carinatus*, squid *Loligo gahi*, and southern blue whiting *Micromesistius australis australis*.

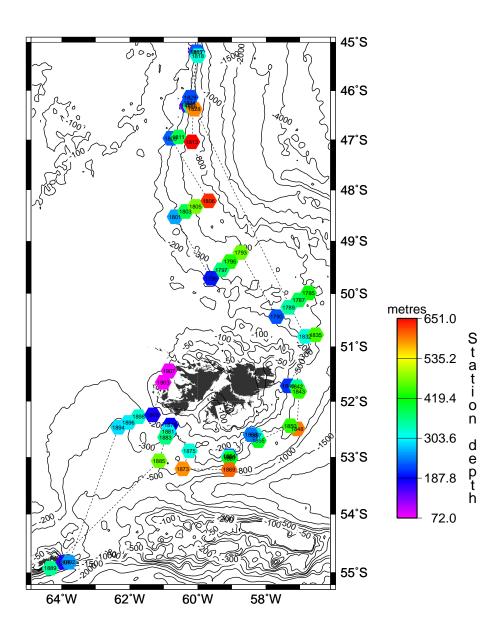


Figure 21. Location and depth (m) of semi-pelagic trawl stations conducted during the research cruise ZDLH1-09-2004 during the 30^{th} Aug. and 24^{th} Sept. 2004.

GRCMachLOLLoligBLUMicroHAKMerlGYNGymuPATMerlDGHSchreit	ruronus magellanicus rourus carinatus ro gahi omesistius australis uccius hubbsi	3070.225 1110.313 419.958 165.824	223.346 561.205 241.487		51.37% 18.58%
LOL Lolig BLU Micr HAK Merl GYN Gym PAT Merl DGH Schr	eo gahi omesistius australis uccius hubbsi	419.958 165.824		1001.929	18 58%
BLUMicroHAKMerlGYNGymuPATMerlDGHSchreit	omesistius australis uccius hubbsi	165.824	241 487		10.0070
HAK Merl GYN Gym PAT Merl DGH Schr	uccius hubbsi		2-11.707	200.638	7.03%
GYNGymPATMerlDGHSchreit			78.721	165.824	2.77%
PAT Merl DGH Schre	, , , , , ,	163.308	161.919	0.000	2.73%
DGH Schro	noscopelus nicholsi	149.291	0.000	148.093	2.50%
	uccius australis	103.088	103.088	0.000	1.72%
	oederichthys bivius	92.984	61.616	61.616	1.56%
POR Lam	na nasus	90.130	90.130	0.000	1.51%
PAR Pata	gonotothen ramsayi	67.778	67.029	62.446	1.13%
MED Medi	usae sp.	62.089	0.000	62.089	1.04%
SPN Spon	iges	55.569	0.000	55.569	0.93%
	yraja griseocauda	37.604	37.604	19.364	0.63%
	ostichus eleginoides	37.061	37.061	0.000	0.62%
ANT Anth		30.409	0.000	30.409	
	orhynchus fasciatus	29.285	26.393	29.285	
	pris immaculatus	25.850	25.850	0.000	
	yraja albomaculata	24.882	22.447	22.447	0.42%
•	ota australis	20.207	20.207	14.206	
	flavirostris	18.580	18.580		
U U	olella porosa	17.571	17.571	0.000	
	pterus blacodes	17.310	16.710		
-	entified ray #3	16.970			
	pteuthis ingens	15.781	15.036		0.26%
	lus acanthias	14.814	14.814	14.814	
-	inculus granulosus	13.554	13.554	0.000	
ALG Alga		10.490	0.000	10.490	
Ũ	vraja brachyurops	9.646			
•	doellojuradoi	9.232	9.232	9.212	
ANM Aner	-	8.156		7.656	
	iculus marginatus	7.964	4.136		
2	operca gobio	7.846			
ROC Rock		7.763	0.000	7.763	0.13%
	oetes fimbriatus	5.514	0.000	5.514	0.09%
	irchin	5.512	0.000	5.512	0.09%
	yraja scaphiops	5.501	5.501	5.501	0.09%
•	rourus holotrachys	4.713	4.713	4.713	0.08%
	yraja macloviana	3.543			
•	noscopelus bolini	3.296			
	ohyrnichthys	2.769			
•	noratus	2.709	2.709	0.000	0.03%
	copsetta milfordi	2.031	1.801	0.230	0.03%
	hoctopus eureka	1.773	1.773	0.000	
	gonotothen longipes	1.642			
	hoctopus sp.cf.januarii	1.234	1.234		
	copsetta maculata	0.877	0.607		0.01%
	roidea	0.788			
	diacea	0.706			
WLK Whe		0.637	0.000		

Table 3. Total catch of semi-pelagic stations 1785-1907 undertaken on the research cruise ZDLH1-09-2004 during the 30th Aug. and 24th Sept. 2004.

Species Code	Species name	Catch (kg)	Sampled (kg)	Discarded (kg)	Proportion (%)
CAS	Campylonotus semistriatus	0.578	0.377	0.201	0.01%
RED	Sebastes oculatus	0.536	0.536	0.536	0.01%
THB	Thymops birsteini	0.464	0.311	0.153	0.01%
ELE	Eledoninae-like octopod	0.437	0.437	0.000	0.01%
PMX	Protomictophum spp.	0.375	0.000	0.375	0.01%
MAT	Achiropsetta tricholepis	0.350	0.350	0.350	0.01%
HIE	Histioteuthis eltarinae	0.337	0.184	0.153	0.01%
PGR	Paradiplospinus gracilis	0.270	0.225	0.270	<0.00%
MUO	Muraenolepis orangiensis	0.260	0.000	0.260	<0.00%
OPH	Ophiuroidea	0.212	0.000	0.212	<0.00%
SAR	Sprattus fuegensis	0.162	0.162	0.162	<0.00%
PMC	Protomictophum choriodon	0.125	0.000	0.125	<0.00%
ILL	Illex argentinus	0.113	0.113	0.113	<0.00%
CAM	Cataetyx messieri	0.097	0.028	0.069	<0.00%
MXX	Myctophidae	0.035	0.000	0.035	<0.00%
HIX	Histioteuthis spp.	0.033	0.000	0.033	<0.00%
SYB	Symbolophorus boops	0.028	0.000	0.028	<0.00%
MUU	Munida subrugosa	0.023	0.000	0.023	<0.00%
MGP	Magnisudis prionosa	0.021	0.021	0.021	<0.00%
PAA	Pandalopsis ampla	0.015	0.015	0.000	<0.00%
CAV	Campylonotus vagans	0.011	0.000	0.011	<0.00%
MAU	Maurolicus muelleri	0.005	0.005	0.000	<0.00%
HYD	Hydrozoa	0.004	0.000	0.004	<0.00%
Total		5,976.560	1,929.045	4,650.712	100.00%

4.1.1 Micromesistius australis australis

Southern blue whiting were taken from throughout the sampling area, except in the far south near Staten Island (Fig. 22). In total, 165.8 kg of southern blue whiting were caught in the survey, with 85% of the catch landed at station number 1867. This trawl station was located to the south of the Falkland Islands near the main spawning grounds in approximately 415 metres of water. When station 1867 was removed from the analysis, the mean weight of fish caught in the south (1.1 kg per trawl) was similar to that in the north (1.77 kg per trawl; Fig. 22). It is pertinent to note that due to inclement weather it was not possible to trawl on the principle spawning grounds of this species, which are located to the south of the west Falkland Islands. For this reason, our estimates of southern blue whiting abundance, particular in the south, are likely to be grossly underestimated. These findings do, however, clearly indicate that there are few southern blue whiting outside the main spawning grounds during the spawning season.

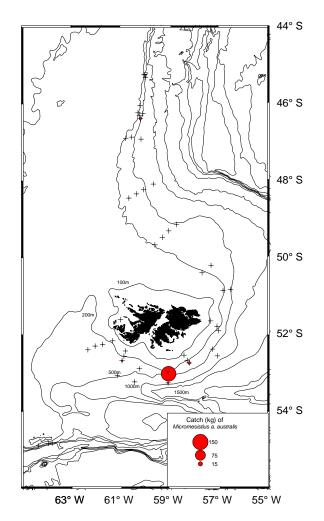


Figure 22. Results from the trawl survey done on the research cruise ZDLH1-09-2004, showing the weight of southern blue whiting caught.

Due to the low number of fish taken in the north, it was not possible to directly compare the size distribution and sexual maturity of fish from there with the south. Subsequently, the data from these two regions were pooled and the differences between depths compared. Although southern blue whiting were caught in depths ranging from 230 to 605 m, most were taken in waters between 350 and 450 metres deep (Fig. 23). Of the total number of fish landed within this depth range, 48% were female, 48% were male and the remaining 2% were classed as juvenile (unable to distinguish sex; Figure 23). Males caught at this depth ranged from 21-55 cm and had a unimodal size distribution around the mode of 40cm. In comparison, females were slightly larger, ranging from 23 to 64 cm and having a modal size of 48 cm.

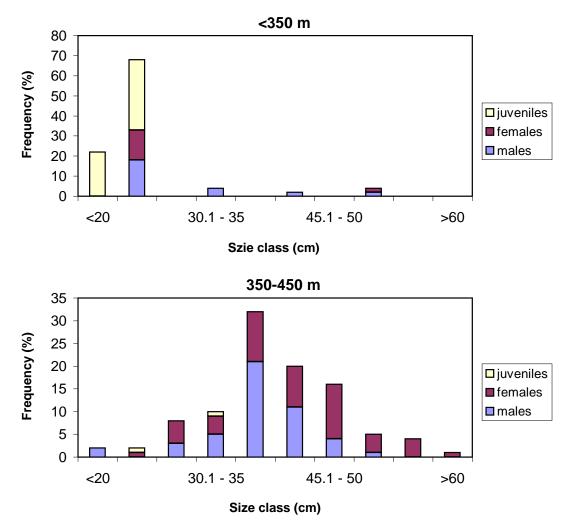


Figure 23. Size structures of southern blue whiting caught during the research cruise ZDLH1-09-2004.

The size structure of southern blue whiting taken from waters shallower than 350 metres was very different. Here, both males and females had a mode of less than 25 cm and only a couple of fish were greater than 30 cm in length (Fig. 23). Given these differences, and the strong relationship between size and sexual maturity in this species, it was not surprising to find that the sexual maturity of fish also seemed to be influenced by depth. Over half of the fish in 350-450 m depth range were sexually mature (i.e. stage IV or higher) and no significant differences in maturity were found between males and females. In contrast, approximately 95% of the fish found in shallow waters were either juveniles or stage I (Fig. 24). Such results indicate that large, sexually mature fish are spatially segregated from the smaller, less sexually mature fish, which are predominately found in the waters shallower than 350 metres (*Figure 24*).

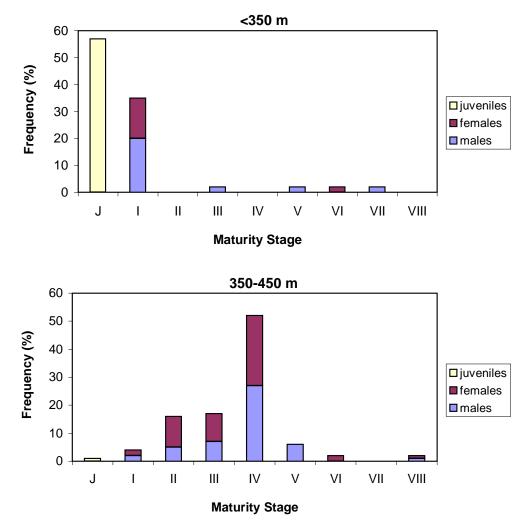


Figure 24. Frequency of southern blue whiting maturity stages during the research cruise ZDLH1-09-2004.

Only two stage VIII were caught in the entire survey, with both of these spent individuals taken at station 1867 (Fig. 24). The lack of spent southern blue whiting caught in this survey reinforces the notion that there is little spawning taking place outside the main spawning grounds of this species.

4.1.2 Macruronus magellanicus

Catches of *Macruronus magellanicus* ranged from 0.624kg at station 1894 to 2442.3kg at station 1826 (Fig. 25). The abundance of this species seemed to be greatest at the extremities of the survey area, particularly at latitude 45-46°S, and stations 1889, 1891, and 1892 south of Staten Island. A total of 432 *Macruronus magellanicus* were sampled, with size ranging from 9cm to 37cm pre-anal length (PAL). Mean length for females and males was 24.0cm and 19.9cm, respectively while the sex ratio of females to males was 1.5 to one. Of these 432 specimens, 98% were immature, i.e., stages I, II, or III and only a few were found to be in post spawning stages 7 and 8. However, some hydrated oocytes were recovered from a female at station 1891.

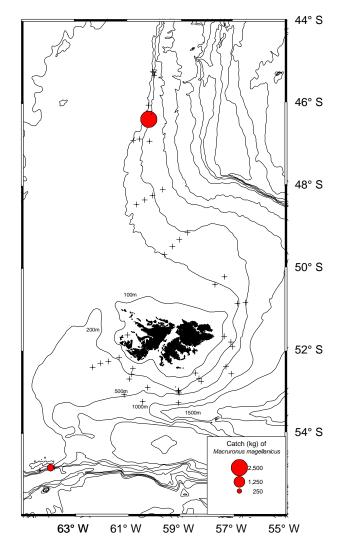


Figure 25 Results from the trawl survey done on the research cruise ZDLH1-09-2004, showing the weight of Macruronus magellanicus caught.

4.1.3 Macrourus carinatus

A total of 1,110kg of *Macrouros carinatus* was caught at 18 stations. Although the catch was distributed over the entire survey area, all significant catches of this species occurred in depths greater than 450 m (Fig. 26). The shallowest depth at which this species was found was 289 m. The overall female to male sex ratio was 1.5 to one and the mean size of females (PAL = 20.0cm) was larger than that of males, who had a mean PAL of 16.9cm. Mean sizes for both males and females was considerably smaller than animals caught in previous surveys. Most of the large animals caught in this survey were taken to the south of the Falkland Islands (Islas Malvinas). While all maturity stages were found (aside from spawning stage VI), the majority of the sampled population was immature (88.6%). Of the remainder, 10.5% of the sample population was in post-spawning stages VII and VIII, and only four specimens (0.7%) were stage IV or V. One of these, a female V, was found north of the Islands at station 1789, whereas the other three were found in the stations south of the Falklands, as well as south of Staten Island.

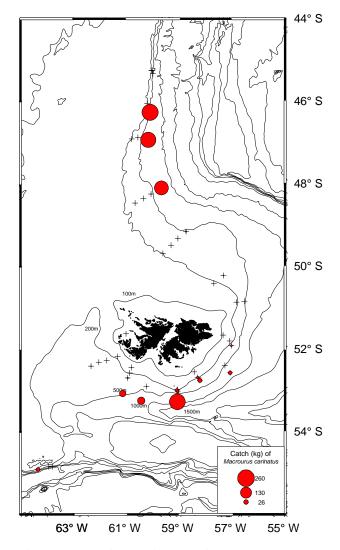


Figure 26. Results from the trawl survey done on the research cruise ZDLH1-09-2004, showing the weight of Macrourus carinatus caught.

4.1.4 Merluccius hubbsi and M. australis

Both species of hake were caught throughout the survey area, with *M. hubbsi* mostly confined to stations north of the Islands, and *M. australis* mostly to the south of the Islands. Catches of the former were as high as 70.9kg at station 1790, while the latter peaked at 82.4kg at station 1866 (Fig. 27). Of the 85 *M. hubbsi* caught, 84 were females. Their size ranged from 43cm to 86cm TL, with a mean 61.7cm. The single male of this species was only 43cm in length. Eighty percent of the sampled specimens were in early maturity stages II and II, with the remaining 20% mostly in stage VIII (16 specimens). One individual was stage VII. Of the 32 *M. australis* caught, over 90% were females with lengths ranging from 57cm to 83cm (mean 73.5cm). The size of the three males caught ranged from 66cm to 79cm, with a mean of 73.3cm. Most of the specimens were in maturity stages II and II, with only one female and one male in stage IV.

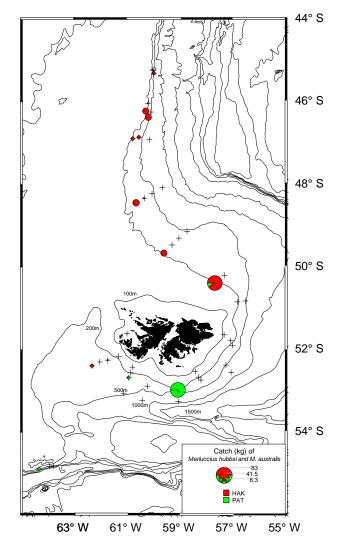


Figure 27. Results from the trawl survey done on the research cruise ZDLH1-09-2004, showing the weight of Merluccius hubbsi and M. australis caught.

4.1.5 Gymnoscopelus nicholsi

Gymnoscopelus nicholsi was caught at a total of 23 stations, but only at depths greater than 315m. Catches ranging from 10.9 to 21.6 kg were taken on the shelf break to the east and north of the Falklands, while smaller amounts were caught elsewhere (Fig. 28). No other information is available for this species.

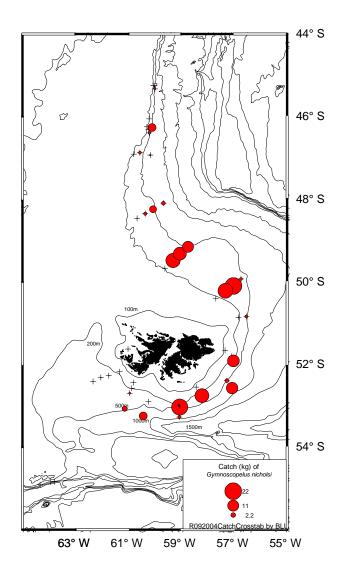


Figure 28. Results from the trawl survey done on the research cruise ZDLH1-09-2004, showing the weight of Gymnoscopelus nicholsi caught.

4.1.6 Patagonotothen ramsayi

Rockcod was caught at 30 stations, with the highest catch of 11.6 kg taken in the northeast of the Falklands at station 1789 (Fig. 29). Individuals ranged from 7cm to 35cm TL, with means of 23.1cm, 22.2cm, and 10.9cm for females, males and juveniles respectively. Sex and maturity were only determined for individuals larger than 13cm TL. Of these, 93.3% was in early developing stages I, II, and III, another 1.1% were stages IV and V, with the remaining 5.7% consisting of stages VII and VIII. Over two thirds of the catch was female. Three of the five pre-spawning specimens were caught south of Cape Meredith at stations 1881 and 1883, with the remaining 2 specimens taken at station 1798, which is north of the Falklands. Post-spawning specimens were only found in stations south of the Falklands, at stations 1869, 1883, 1885, and 1892.

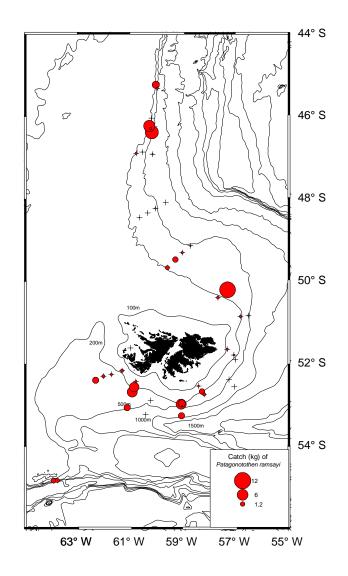


Figure 29. Results from the trawl survey done on the research cruise ZDLH1-09-2004, showing the weight of Patagonotothen ramsayi caught.

4.1.7 Loligo gahi

Patagonian squid *Loligo gahi* was relatively abundant throughout the survey area, with the highest catches taken to the east of Stanley and near Weddel Island in waters 200 m deep (Fig. 30). Some *Loligo* were taken from waters as deep as 600 m, which is uncommon for this squid. This may be due to the abnormally high temperatures at these depths (see section 3). The lowest catches of *Loligo* were taken to the south of Isla de los Estados (Fig. 30).

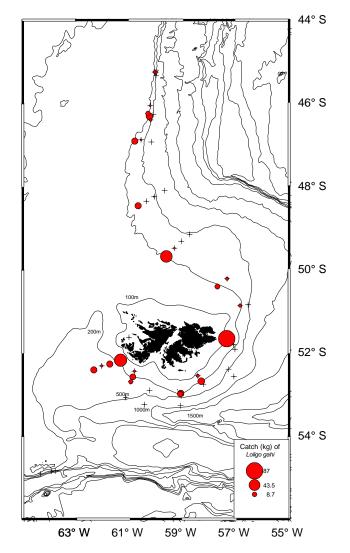


Figure 30. Results from the trawl survey done on the research cruise ZDLH1-09-2004, showing the weight of Loligo gahi caught.

All squid caught were thought to belong to the spring-spawning cohort because most were in pre-spawning condition (females at maturity stages III-V and males at stages IV-V).

Length-frequency distributions and maturities of males and females varied at different depths and different regions. They were analysed separately for depth ranges less than and more than 300 m, and for the following regions: High Seas, Northern, eastern and Southern part of the Falkland Shelf, and Isla de los Estados (Figs 31-35).

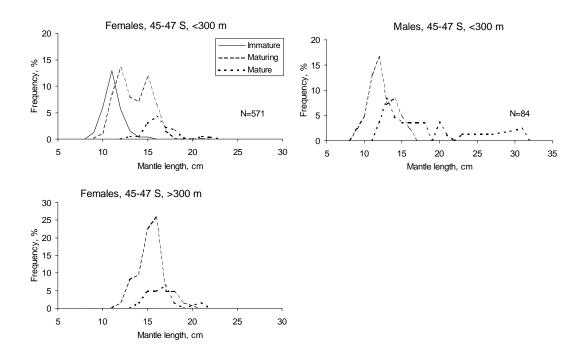


Figure 31. Length frequency distributions of females and males of Loligo gahi caught at different depths on the High Seas during the research cruise ZDLH1-09-2004.

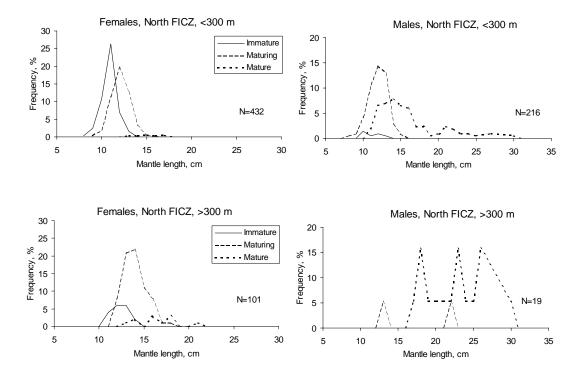


Figure 32. Length frequency distributions of females and males of Loligo gahi caught at different depths in the northern part of the Falkland Shelf during the research cruise ZDLH1-09-2004.

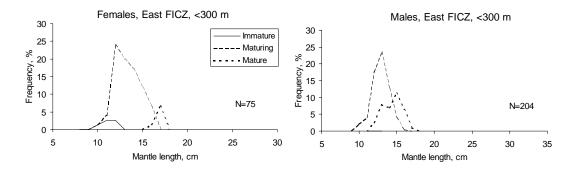


Figure 33. Length frequency distributions of females and males of Loligo gahi caught at different depths in the eastern part of the Falkland Shelf during the research cruise ZDLH1-09-2004.

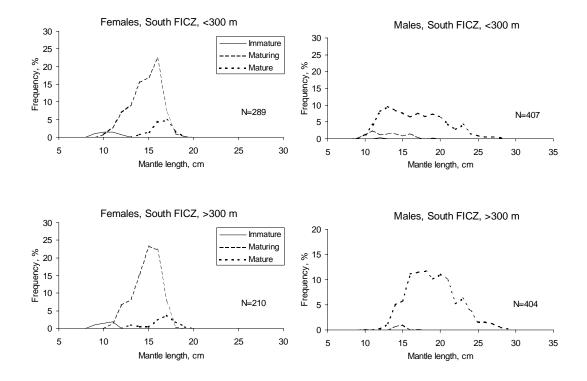


Figure 34. Length frequency distributions of females and males of Loligo gahi caught at different depths in the southern part of the Falkland Shelf during the research cruise ZDLH1-09-2004.

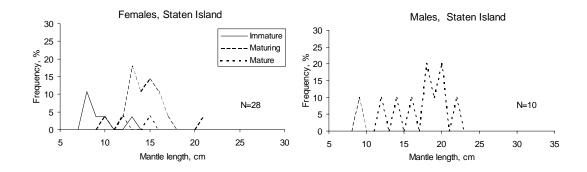


Figure 35. Length frequency distributions of females and males of *Loligo gahi* caught at different depths in the southern part of the Isla de los Estados during the research cruise ZDLH1-09-2004.