```
Doryteuthis gahi Stock Assessment Survey, \(1^{\text {st }}\) Season 2018
Vessel Castelo (ZDLT1)
Falkland Islands
11/02/2018-25/02/2018
```

Survey Team
Andreas Winter
Verónica Iriarte
Tomasz Zawadowski

Index

Summary 2
Introduction 2
Methods 4
Sampling procedures 4
Catch estimation 4
Biomass calculations 5
Biological analyses 6
Results 6
Catch rates and distribution 6
Biomass estimation 9
Biological data 9
References 10
Appendix 12
Geostatistic models 12
Summary tables 13

Summary

1) A stock assessment survey for Doryteuthis gahi (Falkland calamari) was conducted in the 'Loligo Box' from $11^{\text {th }}$ to $25^{\text {th }}$ February 2018. Fifty-nine scientific trawls were taken during the survey, including four dedicated trawls to cover a juvenile toothfish transect on one day. The scientific catch of the survey was 114.87 tonnes D. gahi.
2) A geostatistical estimate of 32,194 tonnes D. gahi (95% confidence interval: 19,552 to $89,938 \mathrm{t}$) was calculated for the fishing zone. This estimate represents the secondlowest $1^{\text {st }}$-season survey biomass of the past five years. Of the total, 569 t were estimated north of $52^{\circ} \mathrm{S}$, and $31,625 \mathrm{t}$ were estimated south of $52^{\circ} \mathrm{S}$.
3) Male and female D. gahi had significantly greater average mantle lengths north of 52 ${ }^{\circ} \mathrm{S}$ than south of $52{ }^{\circ} \mathrm{S}$. Males north: mean mantle length 11.70 cm ; mean maturity stage 2.23 , males south: mean mantle length 10.12 cm ; mean maturity stage 2.00 . Females north: mean mantle length 11.37 cm ; mean maturity stage 2.07 , females south: mean mantle length 9.95 cm ; mean maturity stage 2.18 .
4) 95 taxa were identified in the catches. Jellyfish were the largest species group at 45.9% of total catch by weight, followed by D. gahi (33.5\%), blue whiting (8.0\%), and rock cod (7.4\%). Biological measurements and samples were taken from D. gahi, rock cod, toothfish, and opportunistic specimens of various other species.

Introduction

A stock assessment survey for Doryteuthis gahi (Falkland calamari - Patagonian longfin squid - colloquially Loligo) was carried out by FIFD personnel on-board the fishing vessel Castelo from the $11^{\text {th }}$ to $25^{\text {th }}$ February 2018; experimental license FK034E18. The survey included one day for consecutively sampling an inshore-offshore transect of four juvenile toothfish trawls (Figures 1, 2). This survey continues the series of surveys that have, since February 2006, been conducted immediately prior to season openings to estimate the D. gahi stock available to commercial fishing at the start of the season, and to initiate the in-season management model based on depletion of the stock.

Objectives of the survey were to:

1) Estimate the biomass and spatial distribution of D. gahi on the fishing grounds at the onset of the $1^{\text {st }}$ fishing season, 2018.
2) Continue a series of experimental trawls for studying the recruitment and movement of juvenile toothfish (Dissostichus eleginoides).
3) Estimate the biomass and distribution of common rock cod (Patagonotothen ramsayi) in the 'Loligo Box', for continued monitoring of this stock and in parallel to the finfish research survey being conducted on the F/V Monteferro.
4) Collect biological information on D. gahi, rock cod, toothfish and opportunistically other commercially important fish and squid taken in the trawls.
*) An additional, ad hoc, objective was to start monitoring for a possible reprise of last season's exceptional pinniped ingression to the D. gahi fishing zone (Winter 2017).

The survey was designed to cover the 'Loligo Box' fishing zone (Arkhipkin et al. 2008, 2013) that extends across the southern and eastern part of the Falkland Islands Interim Conservation Zone (Figure 1). The current delineation of the Loligo Box represents an area of approximately $31,721.5 \mathrm{~km}^{2}$.

Figure 1. Survey transects (green lines), fixed-station trawls (red lines), adaptive-station trawls (purple lines), and toothfish transect trawls (blue lines) sampled during the $1^{\text {st }}$ pre-season 2018 survey. Some fixed-station trawls have deviations to adapt to the terrain. Boundaries of the 'Loligo Box' fishing zone and the Beauchêne Island exclusion zone are in black.

The F/V Castelo is a Falkland Islands - registered stern trawler of 67.78 m length, 1321 gross tonnage, and 2450 main engine bhp. Castelo was previously employed for the $1^{\text {st }}$ pre-season 2009 survey (Payá 2009) and the $2^{\text {nd }}$ pre-season 2016 survey (Winter et al. 2016). Like all vessels employed for pre-season surveys, Castelo operates regularly in the D. gahi fishery and used its commercial trawl gear for the survey catches. The following personnel from the FIFD participated in the $1^{\text {st }}$ pre-season 2018 survey:

Andreas Winter	lead scientist
Verónica Iriarte	fisheries observer
Tomasz Zawadowski	fisheries observer

Methods

Sampling procedures

The survey plan included 39 fixed-station trawls located on a series of 15 transects perpendicular to the shelf break around the Loligo Box (Figure 1), followed by up to 21 adaptive-station trawls selected to increase the precision of D. gahi biomass estimates in high-density or high-variability locations. Trawls were designed for an expected duration of 2 hours each, and ranged in distance from 12.8 to 17.6 km (median 15.9 km). The toothfish trawls were taken on one day as part of an ongoing study to characterize shelf out-migration of juvenile toothfish. These four trawls were designed for an expected duration of 1 hour each and ranged in distance from 6.5 to 7.8 km (median 7.1 km). All trawls were bottom trawls. During the progress of each trawl, GPS latitude, GPS longitude, bottom depth, bottom temperature, cable extent, net height, trawl door spread, and trawl speed were recorded on the ship's bridge in 15 -minute intervals, and a visual assessment was made of the quantity and quality of acoustic marks observed on the net-sounder. Following the procedure described in Roa-Ureta and Arkhipkin (2007), the acoustic marks were used to apportion the D. gahi catch of each trawl to the 15 -minute intervals and increase spatial resolution of the catches. For small catches acoustic apportioning cannot be assessed with accuracy, and any D. gahi amounts $<100 \mathrm{~kg}$ were iteratively aggregated by adjacent intervals (if the total D. gahi catch in a trawl was $<100 \mathrm{~kg}$ it was assigned to one interval; the middle interval).

Catch estimation

The catch of every trawl was processed separately by the factory crew and retained catch weight of D. gahi, by size category, was estimated from the number of standard-weight blocks of frozen squid recorded by the factory supervisor. Catch weights of commercially valued fish species were recorded in the same way, but without size categorization. Processed product weights were scaled to whole weights using standard conversion factors (FIG 2016). Total catch composition per trawl, including commercially unvalued species, damaged fish, and undersized fish, was estimated using a combination of visual assessment and basket data. Between 1 and 6 observer baskets (median 3) of unsorted catch were collected at intervals from each survey trawl ${ }^{1}$, depending on its volume and the sampling schedule. These baskets were hand-sorted by the FIFD survey personnel and species weighed separately. The aggregate quantities of bycatch species in baskets were proportioned to the D. gahi catch of the whole trawl. Scarce species were collected and weighed entirely from each trawl. Noncommercial bycatches were then added to the factory production weights (as applicable) to give total catch weights of all fish and squid. Uncertainty in catch weight per species per trawl was estimated by two methods: 1) randomly re-sampling, with replacement $10000 \times$, the baskets per trawl, and 2) stochastically re-weighting, also $10000 \times$, the relative importance of each basket per trawl. Because of the differing numbers of baskets per trawl either method could represent more uncertainty, and the higher uncertainty was retained as the measure of variability for each trawl ${ }^{2}$. For trawls that had some catch recorded of a given species but none occurred in the basket samples, an average variability was taken among all trawl stations that did have that species occurring in the basket samples.

[^0]
Biomass calculations

Biomass density estimates of D. gahi per trawl were calculated as catch weight divided by swept-area; which is the product of trawl distance \times trawl width. Trawl distance was defined as the sum of distance measurements from the start GPS position to the end GPS position of each 15 -minute interval. Trawl width was derived from the distance between trawl doors (determined per interval) according to the equation (Seafish 2010):
trawl width $=($ door distance \times footrope length $) /($ footrope + sweep + bridle $)$
Measurements of Castelo's trawl, provided by the vessel master, were: footrope $=100 \mathrm{~m}$, sweep $=18 \mathrm{~m}$, bridle $=130 \mathrm{~m}$.

For one trawl on $22^{\text {nd }}$ February, batteries failed on the Marport net sensors, eliminating door distance data from approximately half the trawl duration. Door distances were instead estimated from a generalized additive model (GAM) as a function of predictive variables trawl speed, wind speed, and warp cable out; calculated from all other trawl data of this survey for which the door distance sensor was operational ($\mathrm{n}=354$). The GAM resulted in 50.4% deviance explained, which is relatively low as the battery failure also eliminated net height sensor data that are typically significant predictor variables for door distance (Winter and Jürgens 2014, Winter et al. 2015). Because, in this case, half the trawl's door distance data were available, the GAM predictions for the missing other half were standardized (divided by their own mean) and multiplied by the mean of the trawl's available door distance data.

Biomass density estimates were extrapolated to the survey area using geostatistical methods (Petitgas 2001). As previously (e.g., Winter et al. 2017a), the delineated survey area was set to $20,000 \mathrm{~km}^{2}$, partitioned for analysis as 800 area units of $5 \times 5 \mathrm{~km}$. The best geostatistic variogram fit was obtained by modelling all catch densities per interval together (Appendix Figure A1). Biomass values were augmented by the minimal value of 1 g to avoid computational problems with the geostatistic algorithm on biomass densities $=0$.

Uncertainty of the geostatistical model of biomass density was estimated by 10,000 conditional simulations of the 800 area units (Woillez et al. 2009), performed in the R software package 'geoR' (Ribeiro and Diggle 2001). Conditional simulations of catch density extrapolations were iterated $250000 \times$. At each iteration one of the 10,000 conditional simulations was selected and a random normal value calculated for each of the 800 area units with mean $=$ the conditional simulation value and $\mathrm{s} . \mathrm{d} .=$ the absolute conditional simulation value \times the coefficient of variation (c.v.) of acoustic apportionment. The 800 random normal values were then standardized by dividing by the mode of the distribution means of the conditional simulations, to avoid bias of outlier values in the conditional simulations, and the mean of these taken as one iteration of uncertainty.

The uncertainty estimation included the c.v. of acoustic apportionment because assessing acoustic marks (described in the Sampling Procedures) is a visual judgement, and does not objectively differentiate D. gahi from other echo targets entering the net. There is therefore no definitive way to quantify the potential error of this assessment. In previous surveys (e.g., Jones et al. 2015, Winter et al. 2015) a surrogate measure was calculated using the linear coefficient of determination $\left(R^{2}\right)$ between total acoustic score per trawl (Σ (acoustic mark quantity \times quality) trawl) and total D. gahi catch per trawl. Acoustic scores are relative values referenced to each individual trawl, but if all are assigned by the same scientist in a survey, their absolute values should also be consistent across all trawls. However, in the $1^{\text {st }}$ pre-season 2018 survey acoustic scores were variously assigned by all three of the Castelo's bridge officers as well as the survey scientist, and obtained inadequate consistency for this
measure (Figure A2). Instead, an approximate average of $\mathrm{R}^{2}=0.5$ based on previous surveys was used to quantify error. The variability not explained by the linear coefficient of determination (here $1-\mathrm{R}^{2}=0.5$) was multiplied by each interval catch of each trawl and randomly either added to or subtracted from the interval catch:
$\mathrm{rC}_{\text {interval }}=\mathrm{C}_{\text {interval }}+\left(\mathrm{C}_{\text {interval }} \times\left(1-\mathrm{R}^{2}\right) \times \sim \mathrm{r}[-1 \mid 1]\right)$
Thus, if the relationship was perfect $\left(R^{2}=1\right)$ there would be no random effect, and if the relationship was null $\left(\mathrm{R}^{2}=0\right)$ each interval would be randomly either doubled or set to zero (a negative slope is for this purpose considered equivalent to null). The set of $\mathrm{r} \mathrm{C}_{\text {interval }}$ for each trawl was re-standardized to the total D. gahi catch weight of that trawl, then processed through the same algorithms of density distribution and geostatistic extrapolation as the empirical results. Iterative aggregations of small catches ($<100 \mathrm{~kg}$) were summed towards intervals randomly selected within each trawl, not automatically the middle interval, as for the empirical estimate. The full randomization was repeated $10000 \times$ and the c.v. of the mean geostatistic density retained as the measure of error of acoustic apportionment ${ }^{3}$.

Biological analyses

Random samples of D. gahi (target $\mathrm{n}=150$, as far as available) were collected from the factory at all trawl stations. Biological analysis at sea included measurements of the dorsal mantle length rounded down to the nearest half-centimetre, sex, and maturity stage. Additional specimens of D. gahi (LOL) were collected according to area stratification (north, central, south) and depth (shallow, medium, deep), and frozen for statolith extraction and age analysis (Arkhipkin, 2005). A sample of 100 rock cod (PAR) was taken at every trawl station. Catches of toothfish (TOO) were collected from all trawl stations to maximize the time series catch and biological information base for juvenile toothfish, in addition to the samples from the dedicated one-day toothfish transect. Specimens of southern king crab (LIS; Lithodes santolla), Patagonian hake (PAT; Merluccius australis), porbeagle shark (POR; Lamna nasus), and redfish (RED; Sebastes oculatus) were taken opportunistically for lengthfrequency measurement and / or otolith analysis.

Results

Catch rates and distribution

The survey started as usual with fixed-station trawls in the north and proceeded to the southwest end of the Loligo Box. Adaptive trawls were taken mostly in the south, where the highest concentrations of D. gahi biomass were found (Figures 1; 2, Appendix Table A1). A schedule of 4 survey trawls per day was maintained except for February $25^{\text {th }}$, the last day of the survey, when the fourth survey trawl was cancelled because the work of cleaning basket stars (Gorgonocephalus chilensis) from the net after the previous trawl delayed too late into the evening, given the necessity of packing up sampling gear for disembarkation. In total 59

[^1]scientific trawls were recorded during the survey: 39 fixed station trawls catching $51.93 \mathrm{t} D$. gahi, 16 adaptive trawls catching $56.25 \mathrm{t} D$. gahi, and 4 toothfish trawls catching $6.69 \mathrm{t} D$. gahi. Fifteen optional trawls (made after survey hrs) yielded an additional 76.59 t D. gahi, bringing the total catch for the survey to 191.46 t . The scientific survey catch of 114.87 t is below the median for $1^{\text {st }}$ seasons since 2006, and the second-lowest of the last five years (Table 1).

Average D. gahi catch density among fixed-station trawls was $0.17 \mathrm{t} \mathrm{km}^{-2}$ north of 52° S and $3.45 \mathrm{t} \mathrm{km}^{-2}$ south of $52^{\circ} \mathrm{S}$. Both densities were above the respective medians compared to the previous seven years; the south was the second-highest of the past eight years. Average D. gahi catch density among adaptive-station trawls was $2.37 \mathrm{t} \mathrm{km}^{-2}$ north of $52^{\circ} \mathrm{S}$ and 5.26 t km^{-2} south of $52^{\circ} \mathrm{S}$. Both were below their respective medians for the past seven years.

Figure 2 [below]. D. gahi CPUE (km^{-2}) of fixed-station (red), adaptive (purple), and toothfish transect (blue) trawls per 15 -minute trawl interval. Boundaries of the 'Loligo Box' fishing zone and the Beauchêne Island exclusion zone are traced in black.

Table 1. D. gahi pre-season survey scientific catches and biomass estimates (in metric tonnes). Before 2006, surveys were not conducted immediately prior to season opening.

Year	First season			Second season		
	No. trawls	Catch	Biomass	No. trawls	Catch	Biomass
2006	70	376	10213	52	240	22632
2007	65	100	2684	52	131	19198
2008	60	130	8709	52	123	14453
2009	59	187	21636	51	113	22830
2010	55	361	60500	57	123	51754
2011	59	50	16095	59	276	51562
2012	56	128	30706	59	178	28998
2013	60	52	5333	54	164	36283
2014	60	124	34673	58	207	40090
2015	57	184	36424	53	137	25422
2016	57	65	21729	58	225	43580
2017	59	180	48785	63^{*}	314	56807
2018	59^{*}	115	32194			

* Includes four juvenile toothfish transect trawls.

Survey trawls: 11/2/2018-25/2/2018
total predicted Density

Figure 3 [previous page]. Doryteuthis gahi predicted density estimates per $5 \mathrm{~km}^{2}$ area units. Coordinates were converted to WGS 84 projection in UTM sector 21 F using R library rgdal (proj.maptools.org).

Biomass estimation

Total D. gahi biomass in the fishing area was estimated at 32,194 tonnes, with a 95% confidence interval of $[19,552$ to $89,938 \mathrm{t}]$. Distribution of the estimated biomass was strongly preponderant towards the south, with catch projections from 0.001 to $0.43 \mathrm{t} \mathrm{km}^{-2}$ in 95% of area units north of $52^{\circ} \mathrm{S}$, and 0.004 to $17.48 \mathrm{t} \mathrm{km}^{-2}$ in 95% of area units south of $52^{\circ} \mathrm{S}$ (Figure 3). Of the estimated total biomass, 569 t [325 to $4,594 \mathrm{t}$] were north of $52{ }^{\circ} \mathrm{S}$, and $31,625 \mathrm{t}[17,329$ to $89,486 \mathrm{t}]$ were south of $52^{\circ} \mathrm{S}$. Thus $<1.8 \%$ of the biomass was north, representing the most one-sided north-south distribution for a $1^{\text {st }}$ pre-season since at least 2011. The survey total biomass estimate of $32,194 \mathrm{t}$ was the fifth-highest of the thirteen $1^{\text {st }}$ seasons since 2006, but the second-lowest of the last five years (Table 1$)^{4}$.

Biological data

Figure 4 [below]. Length-frequency distributions by maturity stage of male (blue) and female (red) D. gahi from trawls north (top) and south (bottom) of latitude $52^{\circ} \mathrm{S}$.

[^2]

Ninety-five taxa were identified in the catches (Appendix Table A2). Jellyfish made up the highest proportion on record for a $1^{\text {st }}$ pre-season survey: 44.7% unspecified Medusae plus 1.2% Chrysaora sp. and $<0.1 \%$ Aurelia sp. (Table A2). D. gahi was second (33.5\%) followed by blue whiting Micromesistius australis (8.0\%). As typical (Winter and Jürgens 2014, Winter et al. 2016), blue whiting catches were highly aggregated: 68.6% of the total of 27.3 t (Tables A2 and A3) was taken in just two trawls. Rock cod (P. ramsayi) was fourth (7.4\%), the lowest rank and lowest $1^{\text {st }}$ pre-season survey bycatch since at least 2012.

In contrast to the previous pre-season survey in the Loligo Box (Winter et al. 2017b), no pinnipeds were sighted by the FIFD survey team, and no pinniped interactions or incidental catches occurred.
D. gahi mantle length and maturity distributions north and south of $52^{\circ} \mathrm{S}$ are plotted in Figure 4. For both males and females, size and maturity distributions were significantly different between north and south (Kruskal-Wallis test, $p<0.001$ all comparisons). For males north: mean mantle length 11.70 cm ; mean maturity stage 2.23 (on a scale of 1 to 5), males south: mean mantle length 10.12 cm ; mean maturity stage 2.00 . Females north: mean mantle length 11.37 cm ; mean maturity stage 2.07 , females south: mean mantle length 9.95 cm ; mean maturity stage 2.18 .

References

Arkhipkin, A.I. 2005. Statoliths as 'black boxes' (life recorders) in squid. Marine and Freshwater Research 56: 573-583.

Arkhipkin, A.I., Middleton, D.A., Barton, J. 2008. Management and conservation of a short-lived fishery-resource: Loligo gahi around the Falkland Islands. American Fisheries Societies Symposium 49:1243-1252.

Arkhipkin, A., Barton, J., Wallace, S., Winter, A. 2013. Close cooperation between science, management and industry benefits sustainable exploitation of the Falkland Islands squid fisheries. Journal of Fish Biology 83: 905-920.

Box, G.E.P., Cox, D.R. 1964. An analysis of transformations. Journal of the Royal Statistical Society B 26: 211-252.

FIG. 2016. Conversion factors 2017. Fisheries Dept. Notice, Directorate of Natural Resources, Falkland Islands Government, 2 p .

Jones, J., Winter, A., Shcherbich, Z., Boag, T. 2015. Loligo stock assessment survey, ${ }^{\text {nd }}$ season 2015. Technical Document, FIG Fisheries Department. 18 p.

Payá, I. 2009. Loligo gahi stock assessment survey, first season 2009. Technical Document, FIG Fisheries Department. 44 p.

Petitgas, P. 2001. Geostatistics in fisheries survey design and stock assessment: models, variances and applications. Fish and Fisheries 2: 231-249.

Ribeiro, P.J., Diggle, P.J. 2001. geoR: a package for geostatistical analysis. R-NEWS 1: 15-18.
Roa-Ureta, R., Arkhipkin, A.I. 2007. Short-term stock assessment of Loligo gahi at the Falkland Islands: sequential use of stochastic biomass projection and stock depletion models. ICES Journal of Marine Science 64:3-17.

Seafish. 2010. Bridle angle and wing end spread calculations. Research and development catching sector fact sheet. www.seafish.org/Publications/FS40 $01 _10$ BridleAngleandWingEndSpread.pdf.

Winter, A. 2017. Doryteuthis gahi stock assessment, $2^{\text {nd }}$ season 2017. Technical Document, FIG Fisheries Department. 37 p.

Winter, A., Jürgens, L. 2014. Loligo stock assessment survey, $1^{\text {st }}$ season 2014. Technical Document, FIG Fisheries Department. 18 p.

Winter, A., Jones, J., Shcherbich, Z. 2015. Loligo stock assessment survey, $1^{\text {st }}$ season 2015. Technical Document, FIG Fisheries Department. 16 p.

Winter, A., Jones, J., Shcherbich, Z., Iriarte, V. 2016. Falkland calamari stock assessment survey, $2^{\text {nd }}$ season 2016. Technical Document, FIG Fisheries Department. 22 p.

Winter, A., Jones, J., Shcherbich, Z., Iriarte, V. 2017a. Falkland calamari stock assessment survey, 1 ${ }^{\text {st }}$ season 2017. Technical Document, FIG Fisheries Department. 17 p.

Winter, A., Shcherbich, Z., Iriarte, V., Derbyshire, C. 2017b. Doryteuthis gahi stock assessment survey, $2^{\text {nd }}$ season 2017. Technical Document, FIG Fisheries Department. 17 p.

Woillez, M., Rivoirard, J., Fernandes, P.G. 2009. Evaluating the uncertainty of abundance estimates from acoustic surveys using geostatistical simulations. ICES Journal of Marine Science 66: 1377-1383.

Appendix

Geostatistic models

Figure A1 [previous page]. Top: Empirical (black circles) and model variogram (red line) of D. gahi biomass density distributions from catch trawl intervals (left). Bottom left: Histogram of geostatistic biomass density predictions for the 800 area units of the survey area. Bottom right: histogram of conditional simulations for mean biomass density resulting from the model variogram (above), standardized to mode $=1 ; 95 \%$ confidence interval 0.61 to 2.79 .

A simple geostatistic model (all trawl intervals modelled together, not positive catch intervals separately from presence / absence) was found to give the best fit to the data for the first D. gahi survey since $1^{\text {st }}$ pre-season 2015 (Winter et al. 2015). Biomass density estimates from all trawl intervals were modelled with an exponential covariance function and $\lambda=0.10$ Box-Cox transformation (Box and Cox 1964). The geostatistic variogram was fit up to a maximum lag distance of 205 km , and resulted in a practical range of 241.3 km , i.e., the model extrapolated D. gahi densities to spatially correlate up to a maximum separation distance of 241.3 km (Figure A1-top).

The distribution of geostatistic density predictions among the 800 area units was heavily right-skewed, with a maximum of 21.8 tonnes $/ \mathrm{km}^{2}$ but 532 of 800 area units less than 0.25 tonnes $/ \mathrm{km}^{2}$ (Figure A1-bottom left). The mean values of 10,000 conditional simulations (Figure A1-bottom right) had a coefficient of variation of 42.6%.

Season 1, 2018

Figure A2. D. gahi catch vs. total acoustic score per trawl during the $1^{\text {st }}$ pre-season 2018 survey, with linear regression slope (red line).

Summary tables

Table A1 [next page]. Survey stations with total D. gahi catch. Time: vessel's clock; one hour in advance of local (Stanley, F.I.) time, latitude: ${ }^{\circ}$ S, longitude: ${ }^{\circ} \mathrm{W}$. Transects labelled A were adaptive trawls; transects labelled T were toothfish trawls.

Transect Station	Obs Code	Date	Start			End			Depth (m)	$\begin{gathered} \text { D. gahi } \\ (\mathrm{kg}) \end{gathered}$
			Time	Lat	Lon	Time	Lat	Lon		
14-39	2727	11/02/2018	07:10	50.53	57.51	09:06	50.61	57.36	251	0.1
14-37	2728	11/02/2018	10:27	50.64	57.50	${ }^{\text {B }} 12: 11$	${ }^{\text {A }} 50.57$	${ }^{\text {A }} 57.62$	137	120.0
14-38	2729	11/02/2018	C 12:57	50.55	57.59	14:55	50.64	57.44	137	28.8
13-34	2730	11/02/2018	15:58	50.74	57.43	17:38	${ }^{\text {D }} 50.85$	${ }^{\text {D }} 57.37$	130	60.0
12-33	2731	12/02/2018	07:14	50.97	56.90	09:08	50.87	57.01	121	0.9
13-36	2732	12/02/2018	10:08	50.77	57.07	12:00	50.70	57.22	244	0.0
13-35	2733	12/02/2018	12:54	50.75	57.27	14:45	50.83	57.10	131	2.0
12-32	2734	12/02/2018	15:30	50.88	57.04	17:11	50.97	56.95	116	0.5
11-31	2735	13/02/2018	07:05	51.17	56.97	08:44	51.26	57.08	142	7.4
11-30	2736	13/02/2018	09:37	51.21	57.12	11:11	51.13	57.01	127	30.4
11-29	2737	13/02/2018	12:02	51.13	57.10	13:59	51.22	57.24	114	242.6
10-26	2738	13/02/2018	15:51	51.47	57.46	17:55	51.60	57.47	128	595.6
10-27	2739	14/02/2018	07:10	51.60	57.35	09:05	51.48	57.31	146	29.6
10-28	2740	14/02/2018	10:04	51.51	57.20	11:53	51.63	57.25	228	1.9
9-25	2741	14/02/2018	13:36	51.84	57.40	15:50	51.96	57.51	219	19.1
9-24	2742	14/02/2018	16:42	51.93	57.57	18:19	51.82	57.48	163	582.9
8-23	2743	15/02/2018	07:05	52.17	57.60	08:53	52.26	57.73	263	47.6
8-22	2744	15/02/2018	09:51	52.24	57.82	11:33	52.15	57.69	198	2251.7
8-21	2745	15/02/2018	12:35	52.14	57.80	14:35	52.24	57.96	136	18650.0
7-18	2746	15/02/2018	16:42	52.42	58.33	18:26	52.34	58.19	142	3000.0
7-20	2747	16/02/2018	07:12	52.47	58.13	08:56	52.39	57.98	256	66.7
7-19	2748	16/02/2018	09:48	52.37	58.13	11:28	52.46	58.27	178	8566.1
6-15	2749	16/02/2018	13:02	52.56	58.64	14:35	52.61	58.79	132	2177.0
5-12	2750	16/02/2018	15:41	52.72	58.90	${ }^{\mathrm{E}} 16: 40$	52.76	58.98	124	1240.0
0-1	2751	17/02/2018	07:12	52.78	60.36	08:57	52.88	60.23	243	10.8
1-3	2752	17/02/2018	09:48	52.89	60.16	11:24	52.92	59.97	224	160.0
2-5	2753	17/02/2018	12:06	52.92	59.88	14:05	52.94	59.65	173	820.0
3-8	2754	17/02/2018	14:52	52.96	59.59	16:38	52.97	59.36	179	720.0
1-2	2755	18/02/2018	07:02	52.82	60.17	09:01	52.87	59.96	194	145.2
2-4	2756	18/02/2018	09:55	52.83	59.82	11:46	52.85	59.62	160	385.5
3-7	2757	18/02/2018	12:31	52.83	59.59	14:14	52.83	59.39	146	225.0
4-10	2758	18/02/2018	15:18	52.82	59.34	16:55	52.80	59.13	110	8570.0
5-13	2759	19/02/2018	07:02	52.81	58.78	${ }^{\text {B }} 07: 24$	52.82	58.82	147	186.0
4-11	2760	19/02/2018	08:53	52.97	59.07	10:48	53.00	59.29	239	305.2
3-9	2761	19/02/2018	11:38	53.00	59.41	13:10	52.98	59.60	235	85.7
2-6	2762	19/02/2018	14:33	52.94	59.86	16:24	52.98	59.66	228	144.0
5-14	2763	20/02/2018	07:02	52.89	58.94	08:33	52.83	58.77	151	784.4
6-16	2764	20/02/2018	09:39	52.69	58.69	${ }^{\text {B }} 10: 15$	52.67	58.64	150	484.9
6-17	2765	20/02/2018	11:24	52.71	58.62	13:25	52.61	58.47	234	1185.1
A-1	2766	20/02/2018	14:52	52.42	58.30	16:49	52.33	58.14	152	625.2
T-1	2767	21/02/2018	08:04	52.50	59.59	09:00	52.50	59.69	105	504.5
T-2	2768	21/02/2018	10:42	52.67	59.33	11:37	52.65	59.24	123	423.0
T-3	2769	21/02/2018	12:45	52.78	59.19	13:35	52.78	59.29	113	5260.0
T-4	2770	21/02/2018	15:27	52.97	59.00	${ }^{\text {B }} 15: 50$	52.95	58.98	333	500.0
A-2	2771	22/02/2018	07:05	52.54	58.57	08:52	52.65	58.63	141	1183.9
A-3	2772	22/02/2018	09:49	52.68	58.76	12:00	52.69	58.99	126	6130.0
A-4	2773	22/02/2018	12:46	52.71	58.97	14:40	52.82	59.10	113	4130.0
A-5	2774	22/02/2018	15:26	52.79	59.08	17:30	52.81	59.30	111	3168.0
A-6	2775	23/02/2018	07:11	52.01	57.66	09:02	52.13	57.76	138	1548.5
A-7	2776	23/02/2018	10:27	52.27	57.97	12:15	52.34	58.15	149	2105.1

A -8	2777	$23 / 02 / 2018$	$14: 20$	52.56	58.58	$16: 03$	52.62	58.74	138	4446.3
A -9	2778	$23 / 02 / 2018$	$17: 15$	52.56	58.60	$19: 00$	52.68	58.66	142	3823.8
A -10	2779	$24 / 02 / 2018$	$07: 08$	52.91	59.10	$09: 06$	52.82	58.94	137	5565.9
A -11	2780	$24 / 02 / 2018$	$10: 00$	52.84	58.95	$12: 02$	52.93	59.10	140	5764.1
A -12	2781	$24 / 02 / 2018$	$12: 59$	52.91	59.06	$14: 50$	52.85	58.89	144	7723.8
A -13	2782	$24 / 02 / 2018$	$15: 36$	52.85	58.94	$17: 15$	52.92	59.10	142	6180.0
A -14	2783	$25 / 02 / 2018$	$07: 18$	52.33	58.13	$08: 58$	52.26	57.95	148	740.0
A -15	2784	$25 / 02 / 2018$	$10: 13$	52.14	57.77	$11: 50$	52.02	57.68	136	1180.0
A -16	2785	$25 / 02 / 2018$	$14: 09$	51.62	57.50	$16: 15$	51.46	57.50	122	1940.0

A: Track modified to run east of coral bed.
B: Trawl stopped early because the net was filling with Medusae.
C: Starboard door not set correctly. Hauled and re-set.
D: Track modified to run west of hard bottom.
E: Trawl stopped early because the net was filling with Munida.

Table A2. Empirical estimates of survey total catches by species / taxon.

Species Code	Species / Taxon	Total catch (kg)	Total catch (\%)	Sample (kg)	Discard (kg)
MED	Medusae	153011	44.7	0	152991
LOL	Doryteuthis gahi	114875	33.5	313	130
BLU	Micromesistius australis	27311	8.0	0	27311
PAR	Patagonotothen ramsayi	25468	7.4	341	21714
MUN	Munida spp.	7167	2.1	0	7167
CHR	Chrysaora cf. plocamia	4064	1.2	0	4064
SQT	Ascidiacea	1921	0.6	0	1921
GRC	Macrourus carinatus	1603	0.5	0	1195
CGO	Cottoperca gobio	752	0.2	0	752
GRF	Coelorhynchus fasciatus	683	0.2	0	683
WHI	Macruronus magellanicus	682	0.2	0	265
BAC	Salilota australis	567	0.2	0	359
TOO	Dissostichus eleginoides	540	0.2	540	17
CHE	Champsocephalus esox	465	0.1	16	284
SPN	Porifera	464	0.1	0	464
GOC	Gorgonocephalus chilensis	447	0.1	0	447
PTE	Patagonotothen tessellata	374	0.1	0	374
ING	Moroteuthis ingens	293	0.1	0	293
RBR	Bathyraja brachyurops	238	0.1	0	81
KIN	Genypterus blacodes	235	0.1	0	37
ALG	Algae	175	0.1	0	175
DGH	Schroederichthys bivius	142	<0.1	0	142
PAU	Patagolycus melastomus	94	<0.1	0	94
ALF	Allothunnus fallai	83	<0.1	0	83
POR	Lamna nasus	80	<0.1	80	80
NEM	Neophyrnichthys marmoratus	80	<0.1	0	80
ANM	Anemone	78	<0.1	0	78
ZYP	Zygochlamys patagonica	59	<0.1	0	59
RAL	Bathyraja albomaculata	55	<0.1	0	17
EEL	Iluocoetes/Patagolycus mix	55	<0.1	0	55
RFL	Zearaja chilensis	53	<0.1	0	0
RMC	Bathyraja macloviana	42	<0.1	0	39
RSC	Bathyraja scaphiops	41	<0.1	0	3
RBZ	Bathyraja cousseauae	39	<0.1	0	12
RMU	Bathyraja multispinis	37	<0.1	0	4
EGG	Eggmass	35	<0.1	0	35
PAT	Merluccius australis	33	<0.1	33	0

PYM	Physiculus marginatus	30	<0.1	0	30
SUN	Labidaster radiosus	23	<0.1	0	23
STA	Sterechinus agassizi	23	<0.1	0	23
COL	Cosmasterias lurida	22	<0.1	0	22
ILF	Iluocoetes fimbriatus	19	<0.1	0	19
RGR	Bathyraja griseocauda	16	<0.1	0	11
ODM	Odontocymbiola magellanica	15	<0.1	0	15
RPX	Psammobatis spp.	11	<0.1	0	11
LIS	Lithodes santolla	10	<0.1	3	7
ILL	Illex argentinus	10	<0.1	0	8
MUE	Muusoctopus eureka	9	<0.1	0	9
RMG	Bathyraja magellanica	8	<0.1	0	8
SOR	Solaster regularis	6	<0.1	0	6
RDO	Amblyraja doellojuradoi	6	<0.1	0	6
MLA	Muusoctopus longibrachus akambei	6	<0.1	0	2
CAZ	Calyptraster sp.	6	<0.1	0	6
OCM	Octopus megalocyathus	5	<0.1	0	5
FUM	Fusitriton m. magellanicus	4	<0.1	0	4
DGS	Squalus acanthias	4	<0.1	0	4
WRM	Chaetopterus variopedatus	3	<0.1	0	3
POA	Porania antarctica	3	<0.1	0	3
BDU	Brama dussumieri	2	<0.1	2	0
AUR	Aurelia sp.	2	<0.1	0	2
RED	Sebastes oculatus	1	<0.1	1	0
PLU	Primnoellinae	1	<0.1	0	1
PLB	Primnoellinae branched	1	<0.1	0	1
OPV	Ophiacanta vivipara	1	<0.1	0	1
EUO	Eurypodius longirostris	1	<0.1	0	1
COT	Cottunculus granulosus	1	<0.1	0	1
CEX	Ceramaster sp.	1	<0.1	0	1
BRY	Bryozoa	1	<0.1	0	1
AUC	Austrocidaris canaliculata	1	<0.1	0	1
AST	Asteroidea	1	<0.1	0	1
ASA	Astrotoma agassizii	1	<0.1	0	1
UHH	Spatangoida	<1	<0.1	0	0
SMT	Smilasterias triremis	<1	<0.1	0	0
SEP	Seriolella porosa	<1	<0.1	0	0
PYX	Pycnogonida	<1	<0.1	0	0
PES	Peltarion spinosulum	<1	<0.1	0	0
OPL	Ophiuroglypha lymanii	<1	<0.1	0	0
ODP	Odontaster pencillatus	<1	<0.1	0	0
NUD	Nudibranchia	<1	<0.1	0	0
NOW	Paranotothenia magellanica	<1	<0.1	0	0
MXX	Myctophid spp.	<1	<0.1	0	0
MAV	Magellania venosa	<1	<0.1	0	0
ICA	Icichthys australis	<1	<0.1	0	0
HEX	Henricia sp.	<1	<0.1	0	0
GOR	Gorgonacea	<1	<0.1	0	0
EUL	Eurypodius latreillei	<1	<0.1	0	0
DIB	Diplasterias brucei	<1	<0.1	0	0
CTA	Ctenodiscus australis	<1	<0.1	0	0
COG	Patagonotothen guntheri	<1	<0.1	0	0
CAM	Cataetyx messieri	<1	<0.1	0	0
BUT	Stromateus brasiliensis	<1	<0.1	0	0
BAO	Bathybiaster loripes	<1	<0.1	0	0
AUL	Austrolycus laticinctus	<1	<0.1	0	0
ANN	Annelida	<1	<0.1	0	0
ALC	Alcyoniina	<1	<0.1	0	0
342,599				1,328	221,743

Table A3. Catches by survey trawl (observer station = Stat) of principal species, together with 95% confidence intervals (L95, U95) as determined from basket samples. $\mathrm{N}=$ number of basket samples per trawl. Species that had no discard in a trawl were quantified entirely from the factory production and therefore had no confidence interval estimation ("-").

Stat	N	Species	Catch	L95	U95	Stat	N	Species	Catch	L95	U95
2727	2	LOL	0.1	0.1	0.1	2755	3	LOL	145.2	-	-
		PAR	540.0	459.3	638.2			PAR	896.7	724.9	1282.7
		TOO	49.2	-	-			TOO	21.2	15.2	25.4
		RAY	15.5	12.8	19.7			RAY	21.5	8.0	41.7
		BAC	20.0	-	-			BAC	26.5	0.0	37.8
		WHI	100.0	45.2	268.9			WHI	3.0	0.5	10.7
		BLU	230.0	99.9	459.2			CGO	39.5	36.8	42.9
		ILL	1.5	0.0	4.0						
		KIN	56.4	39.3	76.9						
2728	2	LOL	120.0	119.7	120.3	2756	3	LOL	385.5	-	-
		PAR	90.0	41.4	136.7			PAR	690.3	600.2	866.2
		RAY	15.0	13.0	17.1			TOO	3.8	-	-
		WHI	1.5	0.3	5.3			RAY	7.0	0.0	21.8
		BLU	0.3	0.1	0.6			BAC	17.5	0.0	31.1
		CGO	0.4	0.2	0.6			CGO	17.5	2.3	28.7
								ILL	1.0	0.0	2.6
2729	1	LOL	28.8	-	-	2757	2	LOL	225.0	-	-
		PAR	70.0	-	-			PAR	122.3	91.2	157.4
		RAY	15.0	-	-			TOO	5.5	-	-
		WHI	2.1	0.4	7.5			CGO	19.0	12.3	26.6
		CGO	1.2	0.7	1.9						
		ILL	0.3	0.0	0.8						
		KIN	1.4	0.1	2.9						
2730	2	LOL	60.0	56.4	63.6	2758	6	LOL	8570.0	-	-
		PAR	772.5	490.0	1305.6			PAR	0.8	-	-
		RAY	22.6	21.1	25.4						
		WHI	0.8	0.1	2.7						
		CGO	10.0	0.0	28.9						
		KIN	2.1	1.2	3.2						
2731	2	LOL	0.9	0.7	1.0	2759	2	LOL	186.0	-	-
		PAR	0.4	0.4	0.5			PAR	15.0	2.6	35.6
		RAY	0.2	0.1	0.4			TOO	0.4	-	-
		CGO	1.8	1.3	2.3						
2732	3	PAR	400.0	330.7	484.3	2760	3	LOL	305.2	-	-
		TOO	48.5	-	-			PAR	150.0	72.5	949.8
		RAY	11.6	4.7	22.5			TOO	16.4	-	-
		BAC	1.0	0.5	1.8			BAC	51.0	36.0	264.2
		WHI	14.0	-	-			WHI	300.0	-	-
		BLU	500.0	217.2	998.2			BLU	1200.0	284.1	11892.4
		CGO	6.0	3.6	9.3			CGO	20.0	12.1	31.0
		ILL	2.0	0.0	5.2						

2741	3	LOL	19.1	8.5	41.4			LOL	1183.9	1180.7	1188.2
		PAR	500.0	116.8	1183.1	2771	5	PAR	118.0	84.7	187.6
		TOO	0.5	-	-			TOO	0.4	-	-
		RAY	5.7	4.1	8.2			RAY	1.5	-	-
		BAC	3.5	1.6	6.3			CGO	15.0	9.1	23.3
		CGO	4.0	2.4	6.2						
2742	3	LOL	582.9	-	-	2772	3	LOL PAR WHI	$\begin{array}{r} 6130.0 \\ 528.6 \\ 0.8 \end{array}$	$\begin{array}{r} \hline 6129.7 \\ 528.3 \end{array}$	$\begin{array}{r} 6130.2 \\ 528.8 \end{array}$
		PAR	150.0	95.6	195.9						
		WHI	2.0	0.3	7.1						
		BLU	12.0	5.2	24.0						
		CGO	4.0	2.4	6.2						
		ILL	0.6	0.0	1.6						
2743	3	LOL	47.6	-	-	2773	3	$\begin{aligned} & \mathrm{LOL} \\ & \text { PAR } \end{aligned}$	$\begin{array}{r} 4130.0 \\ 17.0 \end{array}$	11.5	20.8
		PAR	381.0	376.6	392.0						
		TOO	52.2	-	-						
		RAY	30.8	24.4	40.9						
		BAC	15.0	0.0	57.2						
		WHI	34.0	-	-						
		BLU	6730.0	1798.2	15880.0						
		CGO	15.0	9.1	23.3						
		KIN	8.0	0.8	16.7						
2744	4	LOL	2251.7	-	-	2774	2	LOL PAR RAY CGO	$\begin{array}{r} 3168.0 \\ 27.4 \\ 2.3 \\ 10.0 \end{array}$	$\begin{array}{r} 11.3 \\ 1.8 \\ 6.0 \end{array}$	44.2 3.0 15.5
		PAR	856.4	728.5	1005.5						
		TOO	4.6	-	-						
		BAC	15.0	7.0	27.1						
		WHI	2.5	0.4	8.9						
		BLU	3.0	0.0	8.7						
		CGO	20.0	12.1	31.0						
		KIN	3.0	0.3	6.2						
2745	3	LOL	18650.	-	-	2775	4	LOL	1548.5	1546.2	1550.7
		PARILL	$\begin{aligned} & 0.2 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$	2.1			PAR	10.0	0.0	28.3
								RAY	0.8	0.3	1.5
								CGO	10.0	6.0	15.5
								ILL	0.1	0.0	0.2
2746	4	LOL	3000.0	-	-	2776	3	LOL	2105.1	2104.7	2105.4
		PAR	20.0	-	-			PAR	750.0	651.8	799.6
								TOO	3.5	-	-
								RAY	2.5	-	-
2747	3	LOL	66.7	-	-			CGO	8.0	0.0	21.3
		PAR	186.0	36.0	251.6	2777	4	LOL	4446.3	4446.0	4446.5
		TOO	39.2	-	-			PAR	157.0	125.3	184.1
		RAY	0.8	0.3	1.5			TOO	0.4	0.2	0.8
		BAC	17.0	15.9	18.6						
		WHI	30.0	5.1	106.8						
		BLU	12000.	4183.7	41988.9						
		CGO	15.0	9.1	23.3						

2748	5	LOL	8566.1	-	-			LOL	3823.8	3823.1	3824.5
		PAR	3575.4	2854.0	4423.3	2778	3	PAR	96.0	84.7	104.6
		TOO	5.7	-	-			TOO	0.3	0.1	0.5
		RAY	1.5	0.0	4.8			CGO	8.0	4.8	12.4
		BAC	15.0	7.0	27.1						
		BLU	85.0	0.0	180.8						
		CGO	10.0	0.0	29.9						
2749	4	LOL	2177.0	-	-	2779		LOL	5565.9	5565.8	5566.1
		PAR	600.0	-	-		3	PAR	262.0	187.4	388.3
								TOO	1.8	-	-
								RAY	0.8	0.3	1.5
								CGO	45.0	0.0	131.7
2750	4	LOL	1240.0	-	-			LOL	5764.1	5763.8	5764.3
		PAR	3.0	1.9	4.4	2780	3	PAR	356.0	262.8	404.6
								CGO	30.0	18.1	46.5
		LOL	10.8	-	-			LOL	7723.8	7723.1	7724.5
2751	3	PAR	1500.0	1147.0	2991.1	2781	4	PAR	30.0	3.3	72.8
		TOO	124.1	-	-			TOO	1.6	-	-
		RAY	44.0	41.6	47.7			WHI	0.8	0.1	2.8
		BAC	150.0	127.6	183.8			CGO	15.0	9.1	23.3
		WHI	20.0	0.0	50.2						
		BLU	2500.0	557.3	15860.0						
		CGO	15.0	0.0	24.3						
		KIN	50.0	-	-	2782		LOL	6180.0	-	-
		LOL	160.0	-	-		3	PAR	999.0	782.8	1442.3
2752	5	PAR	100.0	75.5	163.5			TOO	1.1	-	-
		TOO	9.3	-	-						
		RAY	28.0	16.3	60.0						
		BAC	40.0	12.7	98.4			LOL	740.0	-	-
		BLU	30.0	2.1	122.6	2783	3	PAR	400.0	348.4	462.4
		CGO	30.0	8.1	68.0			TOO	4.5	-	-
		KIN	100.0	-	-			RAY	3.5	2.0	6.7
		LOL	820.0	-	-			BAC	1.0	0.5	1.8
2753	3	PAR	1880.0	1317.1	2411.6			CGO	10.0	4.4	14.9
		TOO	25.2	-	-			LOL	1180.0	1178.7	1181.4
		RAY	15.0	13.8	16.9	2784	2	PAR	15.0	13.3	16.4
		CGO	100.0	27.4	193.4			TOO	1.2	-	-
								RAY	0.8	0.3	1.5
		LOL	720.0	-	-			BAC	1.5	-	-
2754	2	PAR	350.0	332.2	366.7			CGO	18.0	10.9	27.9
		TOO	5.3	-	-			LOL	1940.0	1936.7	1945.1
		RAY	3.0	1.2	5.8	2785	3	PAR	10.0	0.0	14.9
		CGO	35.0	22.9	46.3			RAY	5.5	4.0	9.3
								CGO	8.0	4.8	12.4

[^0]: ${ }^{1}$ Except two fixed-station trawls that were visually almost pure Medusae, and the four trawls of the toothfish transect which were completely sorted by the FIFD survey personnel.
 ${ }^{2}$ Of course, neither method retained any variability for those four trawls of which, by circumstance, only a single basket was sampled (see Table A3).

[^1]: ${ }^{3}$ The actual randomization outcomes were not interpretable as true estimates of geostatistic density. Because randomization blurs stretches of high acoustic backscatter vs. low acoustic backscatter (i.e., the original patterns are not random), spatial correlation is typically weaker, and given the distribution skewness resulting from a small number of high density data, the randomized geostatistic estimates are biased lower. Thus only the relative value of the coefficient of variation is used.

[^2]: ${ }^{4}$ However, note that biomass estimates from previous years may not be explicitly equivalent because the delineation of the fishing area over which the geostatistic model is applied has been revised several times.

